内向整流钾通道KAT1的电压传感器转变表明存在一种受电压传感器内水合作用影响的闭锁机制。
Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.
作者信息
Lefoulon Cécile, Karnik Rucha, Honsbein Annegret, Gutla Paul Vijay, Grefen Christopher, Riedelsberger Janin, Poblete Tomás, Dreyer Ingo, Gonzalez Wendy, Blatt Michael R
机构信息
Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.).
Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (C.L., R.K., A.H., P.V.G., C.G., M.R.B.);Centro de Bioinformatica y Simulacion Molecular, Universidad de Talca, Casilla 721, Talca, Chile (J.R., T.P., W.G.);University of Potsdam, Biochemistry and Biology Group BPMBP, D14476 Golm, Germany (J.R., I.D., W.G.); andCentre for Biotechnology and Plant Genomics UPM, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, 28223 Pozuelo de Alacon, Madrid, Spain (I.D.)
出版信息
Plant Physiol. 2014 Oct;166(2):960-75. doi: 10.1104/pp.114.244319. Epub 2014 Sep 2.
The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.
质膜上的类Kv(钾离子电压依赖性)钾离子通道,包括拟南芥的内向整流KAT1钾离子通道,是调控植物钾离子稳态的重要靶点。尤其是门控修饰,已被视为培育在矿物质和水分利用方面具有优良特性植物的一种有前景的方法。尽管植物钾离子通道门控与哺乳动物Kv和Shaker通道模型有许多相似之处,但对其进行理解仍面临若干挑战。我们利用定点诱变来探究一些残基,这些残基被认为在钾离子通道电压感受器结构域(VSD)的S2和S3α螺旋内一个保守苯丙氨酸(Phe)残基两侧形成两个静电反电荷中心。与KAT1的分子动力学模拟结果一致,我们表明通道门控的电压依赖性对影响这些残基的操作高度敏感。中心Phe残基的突变有利于KAT1通道处于关闭状态,而影响反电荷中心的突变则有利于通道处于开放状态。宏观电流动力学建模也突出了两组突变之间的显著差异。我们结合VSD内氨基酸残基对水合作用的影响以及VSD在围绕中心Phe残基水合时对通道关闭状态的固有偏向来解释这些发现。
相似文献
Biochem Biophys Res Commun. 2005-7-1
Proc Natl Acad Sci U S A. 1996-7-23
引用本文的文献
Nat Commun. 2025-2-25
Plant Physiol. 2019-9-23
Trends Plant Sci. 2017-1
本文引用的文献
J Phys Chem B. 1998-4-30
J Gen Physiol. 2014-2
Proc Natl Acad Sci U S A. 2013-12-23
BMC Bioinformatics. 2013-3-22
Plant Physiol. 2012-5-25