Suppr超能文献

探究电压感应S4螺旋中的α-3(10)转变

Probing α-3(10) transitions in a voltage-sensing S4 helix.

作者信息

Kubota Tomoya, Lacroix Jérôme J, Bezanilla Francisco, Correa Ana M

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.

出版信息

Biophys J. 2014 Sep 2;107(5):1117-1128. doi: 10.1016/j.bpj.2014.07.042.

Abstract

The S4 helix of voltage sensor domains (VSDs) transfers its gating charges across the membrane electrical field in response to changes of the membrane potential. Recent studies suggest that this process may occur via the helical conversion of the entire S4 between α and 310 conformations. Here, using LRET and FRET, we tested this hypothesis by measuring dynamic changes in the transmembrane length of S4 from engineered VSDs expressed in Xenopus oocytes. Our results suggest that the native S4 from the Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) does not exhibit extended and long-lived 310 conformations and remains mostly α-helical. Although the S4 of NavAb displays a fully extended 310 conformation in x-ray structures, its transplantation in the Ci-VSP VSD scaffold yielded similar results as the native Ci-VSP S4. Taken together, our study does not support the presence of long-lived extended α-to-310 helical conversions of the S4 in Ci-VSP associated with voltage activation.

摘要

电压传感器结构域(VSDs)的S4螺旋会随着膜电位的变化,将其门控电荷转移穿过膜电场。最近的研究表明,这一过程可能是通过整个S4在α构象和310构象之间的螺旋转换来实现的。在这里,我们使用长程共振能量转移(LRET)和荧光共振能量转移(FRET),通过测量非洲爪蟾卵母细胞中表达的工程化VSDs的S4跨膜长度的动态变化来验证这一假设。我们的结果表明,来自玻璃海鞘电压敏感磷酸酶(Ci-VSP)的天然S4不会呈现延伸且寿命长的310构象,并且大多保持α螺旋结构。尽管NavAb的S4在X射线结构中呈现完全延伸的310构象,但将其移植到Ci-VSP VSD支架中产生的结果与天然Ci-VSP S4相似。综上所述,我们的研究不支持在与电压激活相关的Ci-VSP中存在S4从α螺旋到310螺旋的长寿命延伸转换。

相似文献

1
Probing α-3(10) transitions in a voltage-sensing S4 helix.
Biophys J. 2014 Sep 2;107(5):1117-1128. doi: 10.1016/j.bpj.2014.07.042.
2
Interaction between S4 and the phosphatase domain mediates electrochemical coupling in voltage-sensing phosphatase (VSP).
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2200364119. doi: 10.1073/pnas.2200364119. Epub 2022 Jun 21.
3
Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP.
Nat Commun. 2024 Feb 15;15(1):1408. doi: 10.1038/s41467-024-45514-6.
4
Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.
J Gen Physiol. 2013 Nov;142(5):543-55. doi: 10.1085/jgp.201310993. Epub 2013 Oct 14.
5
Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2.
J Physiol. 2007 Sep 15;583(Pt 3):875-89. doi: 10.1113/jphysiol.2007.134775. Epub 2007 Jul 5.
6
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Nat Struct Mol Biol. 2014 Mar;21(3):244-52. doi: 10.1038/nsmb.2768. Epub 2014 Feb 2.
7
How to open a proton pore-more than S4?
Nat Struct Mol Biol. 2015 Apr;22(4):277-8. doi: 10.1038/nsmb.2997.
8
Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity.
J Physiol. 2011 Jun 1;589(Pt 11):2687-705. doi: 10.1113/jphysiol.2011.208165. Epub 2011 Apr 4.
9
Allosteric substrate switching in a voltage-sensing lipid phosphatase.
Nat Chem Biol. 2016 Apr;12(4):261-7. doi: 10.1038/nchembio.2022. Epub 2016 Feb 15.
10
Charge movement of a voltage-sensitive fluorescent protein.
Biophys J. 2009 Jan;96(2):L19-21. doi: 10.1016/j.bpj.2008.11.003.

引用本文的文献

1
Modelling of an autonomous Nav1.5 channel system as a part of in silico pharmacology study.
J Mol Model. 2021 May 24;27(6):182. doi: 10.1007/s00894-021-04799-w.
2
Lanthanide-Based Optical Probes of Biological Systems.
Cell Chem Biol. 2020 Aug 20;27(8):921-936. doi: 10.1016/j.chembiol.2020.07.009. Epub 2020 Jul 30.
3
Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins.
Biomolecules. 2020 May 13;10(5):763. doi: 10.3390/biom10050763.
4
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
5
Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel.
Biophys J. 2020 Feb 25;118(4):922-933. doi: 10.1016/j.bpj.2019.08.035. Epub 2019 Sep 5.
6
Methodological improvements for fluorescence recordings in oocytes.
J Gen Physiol. 2019 Feb 4;151(2):264-272. doi: 10.1085/jgp.201812189. Epub 2019 Jan 3.
7
Main-chain mutagenesis reveals intrahelical coupling in an ion channel voltage-sensor.
Nat Commun. 2018 Nov 29;9(1):5055. doi: 10.1038/s41467-018-07477-3.
9
Site-Directed Spin Labeling EPR for Studying Membrane Proteins.
Biomed Res Int. 2018 Jan 23;2018:3248289. doi: 10.1155/2018/3248289. eCollection 2018.
10

本文引用的文献

1
Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel.
Biochemistry. 2014 Apr 1;53(12):2032-42. doi: 10.1021/bi500102w. Epub 2014 Mar 18.
2
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Nat Struct Mol Biol. 2014 Mar;21(3):244-52. doi: 10.1038/nsmb.2768. Epub 2014 Feb 2.
5
Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature. 2012 May 20;486(7401):135-9. doi: 10.1038/nature11077.
6
Tracking a complete voltage-sensor cycle with metal-ion bridges.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8552-7. doi: 10.1073/pnas.1116938109. Epub 2012 Apr 25.
7
Structural basis for gating charge movement in the voltage sensor of a sodium channel.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102. doi: 10.1073/pnas.1118434109. Epub 2011 Dec 12.
8
In search of a consensus model of the resting state of a voltage-sensing domain.
Neuron. 2011 Dec 8;72(5):713-20. doi: 10.1016/j.neuron.2011.09.024.
9
Contributions of counter-charge in a potassium channel voltage-sensor domain.
Nat Chem Biol. 2011 Jul 24;7(9):617-23. doi: 10.1038/nchembio.622.
10
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验