Suppr超能文献

利用多层石墨烯纳米孔传感器检测蛋白质构象变化。

Detection of protein conformational changes with multilayer graphene nanopore sensors.

作者信息

Qiu Wanzhi, Skafidas Efstratios

机构信息

Centre for Neural Engineering, The University of Melbourne , 203 Bouverie Street, Carlton, Victoria 3053, Australia.

出版信息

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16777-81. doi: 10.1021/am5040279. Epub 2014 Sep 19.

Abstract

Detecting conformational change in protein or peptide is imperative in understanding their dynamic function and diagnosing diseases. Existing techniques either rely on ensemble average that lacks the necessary sensitivity or require florescence labeling. Here we propose to discriminate between different protein conformations with multiple layers of graphene nanopore sensors by measuring the effect of protein-produced electrostatic potential (EP) on electric transport. Using conformations of the octapeptide Angiotensin II obtained through molecular dynamics simulations, we show that the EP critically depends on the geometries of constituent atoms and each conformation carries a unique EP signature. We then, using quantum transport simulations, reveal that these characteristic EP profiles cause distinctive modulation to electric charge densities of the graphene nanopores, leading to distinguishable changes in conductivity. Our results open the potential of label-free, single-molecule, and real-time detection of protein conformational changes.

摘要

检测蛋白质或肽的构象变化对于理解其动态功能和疾病诊断至关重要。现有技术要么依赖于缺乏必要灵敏度的总体平均值,要么需要荧光标记。在此,我们提议通过测量蛋白质产生的静电势(EP)对电传输的影响,利用多层石墨烯纳米孔传感器区分不同的蛋白质构象。通过分子动力学模拟获得八肽血管紧张素II的构象,我们表明EP严重依赖于组成原子的几何形状,并且每种构象都具有独特的EP特征。然后,我们利用量子传输模拟揭示,这些特征性的EP分布对石墨烯纳米孔的电荷密度产生独特的调制,导致电导率发生可区分的变化。我们的结果开启了无标记、单分子和实时检测蛋白质构象变化的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验