Sathe Chaitanya, Girdhar Anuj, Leburton Jean-Pierre, Schulten Klaus
Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA. Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois, USA.
Nanotechnology. 2014 Nov 7;25(44):445105. doi: 10.1088/0957-4484/25/44/445105. Epub 2014 Oct 17.
Mechanical manipulation of DNA by forced extension can lead double-stranded DNA (dsDNA) to structurally transform from a helical form to a linear zipper-like form. By employing classical molecular dynamics and quantum mechanical nonequilibrium Green's function-based transport simulations, we show the ability of graphene nanopores to discern different dsDNA conformations, in a helical to zipper transition, using transverse electronic conductance. In particular, conductance oscillations due to helical dsDNA vanish as dsDNA extends from a helical form to a zipper form while it is transported through the nanopore. The predicted ability to detect conformational changes in dsDNA via transverse electronic conductance can widen the potential use of graphene-based nanosensors for DNA detection.
通过强制拉伸对DNA进行机械操作可使双链DNA(dsDNA)从螺旋结构转变为线性拉链状结构。通过采用经典分子动力学和基于量子力学非平衡格林函数的输运模拟,我们展示了石墨烯纳米孔利用横向电子电导在螺旋到拉链转变过程中辨别不同dsDNA构象的能力。特别是,当dsDNA在通过纳米孔传输时从螺旋形式延伸为拉链形式时,由于螺旋dsDNA引起的电导振荡消失。预测的通过横向电子电导检测dsDNA构象变化的能力可以扩大基于石墨烯的纳米传感器在DNA检测中的潜在应用。