Suppr超能文献

从头非绝热动力学多发色团复合物:可扩展图形处理单元加速激子框架。

Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.

机构信息

PULSE Institute and Department of Chemistry, Stanford University , Stanford, California 94305, United States.

出版信息

Acc Chem Res. 2014 Sep 16;47(9):2857-66. doi: 10.1021/ar500229p. Epub 2014 Sep 4.

Abstract

Conspectus Although advances in computer hardware and algorithms tuned for novel computer architectures are leading to significant increases in the size and time scale for molecular simulations, it remains true that new methods and algorithms will be needed to address some of the problems in complex chemical systems, such as electrochemistry, excitation energy transport, proton transport, and condensed phase reactivity. Ideally, these new methods would exploit the strengths of emerging architectures. Fragment based approaches for electronic structure theory decompose the problem of solving the electronic Schrodinger equation into a series of much smaller problems. Because each of these smaller problems is largely independent, this strategy is particularly well-suited to parallel architectures. It appears that the most significant advances in computer architectures will be toward increased parallelism, and therefore fragment-based approaches are an ideal match to these trends. When the computational effort involved scales with the third (or higher) power of the molecular size, there is a large benefit to fragment-based approaches even on serial architectures. This is the case for many of the well-known methods for solving the electronic structure theory problem, especially when wave function-based approaches including electron correlation are considered. A major issue in fragment-based approaches is determining or improving their accuracy. Since the Achilles' heel of any such method lies in the approximations used to stitch the smaller problems back together (i.e., in the treatment of the cross-fragment interactions), it can often be important to ensure that the size of the smaller problems is "large enough." Thus, there are two frontiers that need to be extended in order to enable molecular simulations for large systems and long times: the strongly coupled problem of medium sized molecules (100-500 atoms) and the more weakly coupled problem of decomposing ("fragmenting") a molecular system and then stitching it back together. In this Account, we address both of these problems, the first by using graphical processing units (GPUs) and electronic structure algorithms tuned for these architectures and the second by using an exciton model as a framework in which to stitch together the solutions of the smaller problems. The multitiered parallel framework outlined here is aimed at nonadiabatic dynamics simulations on large supramolecular multichromophoric complexes in full atomistic detail. In this framework, the lowest tier of parallelism involves GPU-accelerated electronic structure theory calculations, for which we summarize recent progress in parallelizing the computation and use of electron repulsion integrals (ERIs), which are the major computational bottleneck in both density functional theory (DFT) and time-dependent density functional theory (TDDFT). The topmost tier of parallelism relies on a distributed memory framework, in which we build an exciton model that couples chromophoric units. Combining these multiple levels of parallelism allows access to ground and excited state dynamics for large multichromophoric assemblies. The parallel excitonic framework is in good agreement with much more computationally demanding TDDFT calculations of the full assembly.

摘要

概述

虽然针对新型计算机架构优化的计算机硬件和算法的进步正在导致分子模拟的规模和时间尺度显著增加,但仍然需要新的方法和算法来解决复杂化学系统中的一些问题,例如电化学、激发能传递、质子传递和凝聚相反应性。理想情况下,这些新方法将利用新兴架构的优势。基于片段的电子结构理论方法将求解电子薛定谔方程的问题分解为一系列较小的问题。由于这些较小的问题在很大程度上是独立的,因此该策略特别适合于并行架构。看来,计算机架构的最重要进展将朝着提高并行性的方向发展,因此基于片段的方法与这些趋势非常匹配。当所涉及的计算工作量与分子尺寸的第三(或更高)功率成比例缩放时,即使在串行架构上,基于片段的方法也具有很大的优势。对于许多著名的解决电子结构理论问题的方法来说就是这种情况,尤其是当考虑包括电子相关在内的波函数方法时。基于片段的方法中的一个主要问题是确定或提高其准确性。由于任何此类方法的阿喀琉斯之踵都在于用于将较小的问题重新组合在一起的近似值(即,在处理跨片段相互作用时),因此通常很重要的是要确保较小问题的大小“足够大”。因此,为了能够对大系统和长时间进行分子模拟,需要扩展两个前沿:中等大小分子(100-500 个原子)的强耦合问题和分解(“片段化”)分子系统然后将其重新组合在一起的更弱耦合问题。在本报告中,我们解决了这两个问题,第一个问题是使用针对这些架构优化的图形处理单元 (GPU) 和电子结构算法,第二个问题是使用激子模型作为将较小问题的解决方案拼接在一起的框架。这里概述的多层并行框架旨在针对具有完整原子细节的大型超分子多发色团配合物进行非绝热动力学模拟。在这个框架中,最低层的并行性涉及 GPU 加速的电子结构理论计算,我们总结了在并行化计算和使用电子排斥积分 (ERI) 方面的最新进展,ERI 是密度泛函理论 (DFT) 和时变密度泛函理论 (TDDFT) 中的主要计算瓶颈。最高层的并行性依赖于分布式内存框架,其中我们构建了一个耦合发色团单元的激子模型。结合这些多个层次的并行性,可以访问大的多发色团组装的基态和激发态动力学。并行激子框架与更具计算挑战性的全组装 TDDFT 计算吻合良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验