Humboldt-Universität zu Berlin, Berlin, Germany.
Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
Hum Brain Mapp. 2024 Feb 15;45(3):e26588. doi: 10.1002/hbm.26588.
Attention network theory proposes three distinct types of attention-alerting, orienting, and control-that are supported by separate brain networks and modulated by different neurotransmitters, that is, norepinephrine, acetylcholine, and dopamine. Here, we explore the extent of cortical, genetic, and molecular dissociation of these three attention systems using multimodal neuroimaging. We evaluated the spatial overlap between fMRI activation maps from the attention network test (ANT) and cortex-wide gene expression data from the Allen Human Brain Atlas. The goal was to identify genes associated with each of the attention networks in order to determine whether specific groups of genes were co-expressed with the corresponding attention networks. Furthermore, we analyzed publicly available PET-maps of neurotransmitter receptors and transporters to investigate their spatial overlap with the attention networks. Our analyses revealed a substantial number of genes (3871 for alerting, 6905 for orienting, 2556 for control) whose cortex-wide expression co-varied with the activation maps, prioritizing several molecular functions such as the regulation of protein biosynthesis, phosphorylation, and receptor binding. Contrary to the hypothesized associations, the ANT activation maps neither aligned with the distribution of norepinephrine, acetylcholine, and dopamine receptor and transporter molecules, nor with transcriptomic profiles that would suggest clearly separable networks. Independence of the attention networks appeared additionally constrained by a high level of spatial dependency between the network maps. Future work may need to reconceptualize the attention networks in terms of their segregation and reevaluate the presumed independence at the neural and neurochemical level.
注意网络理论提出了三种不同类型的注意——警觉、定向和控制——它们分别由不同的大脑网络支持,并由不同的神经递质调节,即去甲肾上腺素、乙酰胆碱和多巴胺。在这里,我们使用多模态神经影像学技术来探索这三种注意系统的皮质、遗传和分子分离程度。我们评估了注意力网络测试 (ANT) 的 fMRI 激活图与艾伦人类大脑图谱的全皮质基因表达数据之间的空间重叠。目的是确定与每个注意网络相关的基因,以确定是否有特定的基因群与相应的注意网络共表达。此外,我们分析了公开的神经递质受体和转运体 PET 图谱,以研究它们与注意网络的空间重叠。我们的分析揭示了大量的基因(警觉网络的 3871 个,定向网络的 6905 个,控制网络的 2556 个),它们的全皮质表达与激活图共变,优先考虑了几种分子功能,如蛋白质生物合成、磷酸化和受体结合的调节。与假设的关联相反,ANT 的激活图既不符合去甲肾上腺素、乙酰胆碱和多巴胺受体和转运体分子的分布,也不符合表明可明确分离的网络的转录组特征。注意网络的独立性似乎还受到网络图之间高度空间依赖性的限制。未来的工作可能需要根据它们的分离来重新概念化注意网络,并重新评估在神经和神经化学水平上假定的独立性。