Suppr超能文献

区分单相抑郁和双相抑郁的脑形态学生物标志物。一种基于体素形态学的模式分类方法。

Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach.

作者信息

Redlich Ronny, Almeida Jorge J R, Grotegerd Dominik, Opel Nils, Kugel Harald, Heindel Walter, Arolt Volker, Phillips Mary L, Dannlowski Udo

机构信息

Department of Psychiatry, University of Münster, Münster, Germany.

Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.

出版信息

JAMA Psychiatry. 2014 Nov;71(11):1222-30. doi: 10.1001/jamapsychiatry.2014.1100.

Abstract

IMPORTANCE

The structural abnormalities in the brain that accurately differentiate unipolar depression (UD) and bipolar depression (BD) remain unidentified.

OBJECTIVES

First, to investigate and compare morphometric changes in UD and BD, and to replicate the findings at 2 independent neuroimaging sites; second, to differentiate UD and BD using multivariate pattern classification techniques.

DESIGN, SETTING, AND PARTICIPANTS: In a 2-center cross-sectional study, structural gray matter data were obtained at 2 independent sites (Pittsburgh, Pennsylvania, and Münster, Germany) using 3-T magnetic resonance imaging. Voxel-based morphometry was used to compare local gray and white matter volumes, and a novel pattern classification approach was used to discriminate between UD and BD, while training the classifier at one imaging site and testing in an independent sample at the other site. The Pittsburgh sample of participants was recruited from the Western Psychiatric Institute and Clinic at the University of Pittsburgh from 2008 to 2012. The Münster sample was recruited from the Department of Psychiatry at the University of Münster from 2010 to 2012. Equally divided between the 2 sites were 58 currently depressed patients with bipolar I disorder, 58 age- and sex-matched unipolar depressed patients, and 58 matched healthy controls.

MAIN OUTCOMES AND MEASURES

Magnetic resonance imaging was used to detect structural differences between groups. Morphometric analyses were applied using voxel-based morphometry. Pattern classification techniques were used for a multivariate approach.

RESULTS

At both sites, individuals with BD showed reduced gray matter volumes in the hippocampal formation and the amygdala relative to individuals with UD (Montreal Neurological Institute coordinates x = -22, y = -1, z = 20; k = 1938 voxels; t = 4.75), whereas individuals with UD showed reduced gray matter volumes in the anterior cingulate gyrus compared with individuals with BD (Montreal Neurological Institute coordinates x = -8, y = 32, z = 3; k = 979 voxels; t = 6.37; all corrected P < .05). Reductions in white matter volume within the cerebellum and hippocampus were found in individuals with BD. Pattern classification yielded up to 79.3% accuracy (P < .001) by differentiating the 2 depressed groups, training and testing the classifier at one site, and up to 69.0% accuracy (P < .001), training the classifier at one imaging site (Pittsburgh) and testing it at the other independent sample (Münster). Medication load did not alter the pattern of results.

CONCLUSIONS AND RELEVANCE

Individuals with UD and those with BD are differentiated by structural abnormalities in neural regions supporting emotion processing. Neuroimaging and multivariate pattern classification techniques are promising tools to differentiate UD from BD and show promise as future diagnostic aids.

摘要

重要性

大脑中能够准确区分单相抑郁症(UD)和双相抑郁症(BD)的结构异常仍未明确。

目的

首先,研究并比较UD和BD的形态学变化,并在2个独立的神经影像站点重复该发现;其次,使用多变量模式分类技术区分UD和BD。

设计、地点和参与者:在一项2中心横断面研究中,使用3-T磁共振成像在2个独立站点(宾夕法尼亚州匹兹堡和德国明斯特)获取结构灰质数据。基于体素的形态学测量用于比较局部灰质和白质体积,一种新颖的模式分类方法用于区分UD和BD,同时在一个影像站点训练分类器并在另一个站点的独立样本中进行测试。匹兹堡的参与者样本于2008年至2012年从匹兹堡大学西部精神病学研究所和诊所招募。明斯特样本于2010年至2012年从明斯特大学精神病学系招募。58名目前患有双相I型障碍的抑郁症患者、58名年龄和性别匹配的单相抑郁症患者以及58名匹配的健康对照在2个站点之间平均分配。

主要结局和测量指标

使用磁共振成像检测组间结构差异。使用基于体素的形态学测量进行形态学分析。模式分类技术用于多变量方法。

结果

在两个站点,与UD患者相比,BD患者海马结构和杏仁核的灰质体积减少(蒙特利尔神经病学研究所坐标x = -22,y = -1,z = 20;k = 1938体素;t = 4.75),而与BD患者相比,UD患者前扣带回的灰质体积减少(蒙特利尔神经病学研究所坐标x = -8,y = 32,z = 3;k = 979体素;t = 6.37;所有校正P <.05)。BD患者小脑和海马内的白质体积减少。通过区分两个抑郁症组,在一个站点训练和测试分类器,模式分类的准确率高达79.3%(P <.001),在一个影像站点(匹兹堡)训练分类器并在另一个独立样本(明斯特)进行测试时,准确率高达69.0%(P <.001)。药物负荷并未改变结果模式。

结论及意义

UD患者和BD患者通过支持情绪处理的神经区域的结构异常进行区分。神经影像和多变量模式分类技术是区分UD和BD的有前景的工具,并有望成为未来的诊断辅助手段。

相似文献

3
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:20-27. doi: 10.1016/j.pnpbp.2018.03.022. Epub 2018 Mar 28.
4
Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives.
Biol Psychiatry. 2013 Jan 15;73(2):111-8. doi: 10.1016/j.biopsych.2012.06.010. Epub 2012 Jul 10.
5
A voxel-based diffusion tensor imaging study in unipolar and bipolar depression.
Bipolar Disord. 2017 Feb;19(1):23-31. doi: 10.1111/bdi.12465. Epub 2017 Feb 27.
6
Right orbitofrontal corticolimbic and left corticocortical white matter connectivity differentiate bipolar and unipolar depression.
Biol Psychiatry. 2010 Sep 15;68(6):560-7. doi: 10.1016/j.biopsych.2010.04.036. Epub 2010 Jul 2.
8
Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Mar 5;41:52-9. doi: 10.1016/j.pnpbp.2012.11.010. Epub 2012 Nov 28.
10
Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters.
Bipolar Disord. 2016 Nov;18(7):612-623. doi: 10.1111/bdi.12446. Epub 2016 Nov 5.

引用本文的文献

1
Differentiation between bipolar disorder and major depressive disorder based on AMPA receptor distribution.
Front Neural Circuits. 2025 Aug 4;19:1624179. doi: 10.3389/fncir.2025.1624179. eCollection 2025.
5
Brain structural correlates of an impending initial major depressive episode.
Neuropsychopharmacology. 2025 Jun;50(7):1176-1185. doi: 10.1038/s41386-025-02075-6. Epub 2025 Mar 12.
6
Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis.
Front Psychiatry. 2025 Jan 28;15:1515549. doi: 10.3389/fpsyt.2024.1515549. eCollection 2024.
7
Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.
Neuroradiology. 2025 Apr;67(4):921-930. doi: 10.1007/s00234-025-03544-x. Epub 2025 Jan 18.
9
Machine minds: Artificial intelligence in psychiatry.
Ind Psychiatry J. 2024 Aug;33(Suppl 1):S265-S267. doi: 10.4103/ipj.ipj_157_23. Epub 2024 Feb 15.

本文引用的文献

2
MANIA-a pattern classification toolbox for neuroimaging data.
Neuroinformatics. 2014 Jul;12(3):471-86. doi: 10.1007/s12021-014-9223-8.
3
White matter hyperintensities and cognitive performance in adult patients with bipolar I, bipolar II, and major depressive disorders.
Eur Psychiatry. 2014 May;29(4):226-32. doi: 10.1016/j.eurpsy.2013.08.002. Epub 2013 Oct 28.
5
Pattern recognition analysis of anterior cingulate cortex blood flow to classify depression polarity.
Br J Psychiatry. 2013 Sep;203(3):310-1. doi: 10.1192/bjp.bp.112.122838. Epub 2013 Aug 22.
6
Amygdala and whole-brain activity to emotional faces distinguishes major depressive disorder and bipolar disorder.
Bipolar Disord. 2013 Nov;15(7):741-52. doi: 10.1111/bdi.12106. Epub 2013 Aug 1.
7
Bipolar disorder diagnosis: challenges and future directions.
Lancet. 2013 May 11;381(9878):1663-71. doi: 10.1016/S0140-6736(13)60989-7.
8
The distinction between unipolar and bipolar depression: a cognitive theory perspective.
Compr Psychiatry. 2013 Oct;54(7):740-9. doi: 10.1016/j.comppsych.2013.02.004. Epub 2013 Apr 19.
10
Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies.
Psychiatry Res. 2013 Jan 30;211(1):37-46. doi: 10.1016/j.pscychresns.2012.06.006. Epub 2012 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验