Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
Department of Mental Health Psychiatric Service, Diagnosis and Treatment Hospital "G. Mazzini," ASL 4, NHS, Teramo, Italy.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Apr 20;91:20-27. doi: 10.1016/j.pnpbp.2018.03.022. Epub 2018 Mar 28.
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification.
仅凭临床线索区分双相情感障碍(BD)中的抑郁与单相抑郁(UD)较为困难,这促使人们在神经影像学测量中探索有前景的神经标志物,以区分 BD 抑郁与 UD。本文综述了直接基于神经影像学模式比较 UD 和 BD 抑郁的结构和功能磁共振成像(MRI)研究,这些模式包括功能 MRI 研究局部脑激活或功能连接、结构 MRI 研究灰质或白质形态以及使用机器学习方法的模式分类分析。大量研究报告了 BD 抑郁与 UD 之间情绪或奖励处理神经回路的不同功能和结构改变。在情绪、奖励或认知相关任务中,BD 和 UD 之间的神经网络存在不同的激活模式,包括杏仁核、前扣带皮层(ACC)、前额叶皮层(PFC)和纹状体。与 UD 相比,BD 的默认模式和额顶叶网络以及包括 PFC、ACC、顶叶和颞叶以及丘脑在内的脑区的功能连接模式更强。BD 和 UD 之间的 ACC、海马体、杏仁核和背外侧前额叶皮层(DLPFC)的灰质体积存在差异,与 UD 相比,BD 的 DLPFC 更薄。与 UD 相比,BD 在胼胝体前部和后扣带束的完整性降低。一些研究使用结构和功能 MRI 数据进行模式分类分析,使用监督机器学习方法来区分 UD 和 BD 抑郁,分类准确性达到中等水平。