Suppr超能文献

通过自由能计算区分结合剂与假阳性:针对HIV蛋白酶侧翼位点的片段筛选。

Distinguishing binders from false positives by free energy calculations: fragment screening against the flap site of HIV protease.

作者信息

Deng Nanjie, Forli Stefano, He Peng, Perryman Alex, Wickstrom Lauren, Vijayan R S K, Tiefenbrunn Theresa, Stout David, Gallicchio Emilio, Olson Arthur J, Levy Ronald M

机构信息

Center for Biophysics & Computational Biology/ICMS, ‡Department of Chemistry, Temple University , Philadelphia, Pennsylvania19122, United States.

出版信息

J Phys Chem B. 2015 Jan 22;119(3):976-88. doi: 10.1021/jp506376z. Epub 2014 Sep 17.

Abstract

Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand-receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein-ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets.

摘要

分子对接是药物发现和结构生物学中用于预测配体 - 受体复合物结构的强大工具。然而,对接计算的准确性可能受到诸如评分函数中忽略蛋白质重排等因素的限制;因此,配体筛选可能会产生较高的假阳性命中率。尽管绝对结合自由能方法在准确对结合剂进行排序方面仍存在困难,但我们认为它们可有效地用于区分结合剂和非结合剂,并降低假阳性率。在此,我们研究了一组与HIV - 1蛋白酶瓣上一个新发现的潜在变构位点对接良好的配体。片段与该位点的结合稳定了蛋白酶的封闭形式,这可用于变构抑制剂的设计。来自AutoDock的23个排名靠前的蛋白质 - 配体复合物使用两种方法进行自由能筛选,即最近开发的结合能分析方法(BEDAM)和标准双去耦方法(DDM)。自由能计算正确识别了大多数假阳性(≥83%)并找回了所有已确认的结合剂。结果显示结合剂和假阳性之间的平均差距≥3.7千卡/摩尔。我们提出了一个将结合自由能分解为受体构象宏观状态贡献的公式,这为不同结合模式的作用提供了见解。我们的结合自由能成分分析进一步表明,改进对与未满足极性基团相关的去溶剂化惩罚的处理可以降低对接中的假阳性命中率。当前的研究表明,对接与自由能方法的结合对于针对有价值的药物靶点进行更准确的配体筛选非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/317a/4306491/5dcc2b7045ad/jp-2014-06376z_0001.jpg

相似文献

2
Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
J Comput Aided Mol Des. 2016 Sep;30(9):743-751. doi: 10.1007/s10822-016-9952-x. Epub 2016 Aug 25.
7
Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening.
J Chem Inf Model. 2013 Jan 28;53(1):114-22. doi: 10.1021/ci300508m. Epub 2013 Jan 9.
8
Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina.
PLoS One. 2010 Aug 4;5(8):e11955. doi: 10.1371/journal.pone.0011955.
9
Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation.
J Phys Chem B. 2011 Apr 28;115(16):4718-24. doi: 10.1021/jp2010265. Epub 2011 Apr 5.

引用本文的文献

1
PDBrestore: A Free Web Interface for Processing and Fixing Protein Chains From Raw PDB Files.
J Comput Chem. 2025 May 15;46(13):e70124. doi: 10.1002/jcc.70124.
2
The Open Force Field Initiative: Open Software and Open Science for Molecular Modeling.
J Phys Chem B. 2024 Jul 25;128(29):7043-7067. doi: 10.1021/acs.jpcb.4c01558. Epub 2024 Jul 11.
5
Dealing with Induced Fit, Conformational Selection, and Secondary Poses in Molecular Dynamics Simulations for Reliable Free Energy Predictions.
J Chem Theory Comput. 2023 Dec 12;19(23):8942-8954. doi: 10.1021/acs.jctc.3c00867. Epub 2023 Dec 1.
6
Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies.
Molecules. 2023 May 5;28(9):3906. doi: 10.3390/molecules28093906.
7
10
Essential Dynamics Ensemble Docking for Structure-Based GPCR Drug Discovery.
Front Mol Biosci. 2022 Jun 29;9:879212. doi: 10.3389/fmolb.2022.879212. eCollection 2022.

本文引用的文献

1
Monte Carlo simulations for free energies of hydration: Past to present.
J Chem Phys. 2024 Aug 14;161(6). doi: 10.1063/5.0222659.
2
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors.
J Chem Theory Comput. 2013 Feb 12;9(2):1282-93. doi: 10.1021/ct300911a. Epub 2013 Jan 30.
5
Blind prediction of HIV integrase binding from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):327-45. doi: 10.1007/s10822-014-9723-5. Epub 2014 Mar 5.
6
Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):475-90. doi: 10.1007/s10822-014-9711-9. Epub 2014 Feb 7.
8
Current and emerging opportunities for molecular simulations in structure-based drug design.
Phys Chem Chem Phys. 2014 Mar 14;16(10):4465-77. doi: 10.1039/c3cp54164a.
9
Crystallographic fragment-based drug discovery: use of a brominated fragment library targeting HIV protease.
Chem Biol Drug Des. 2014 Feb;83(2):141-8. doi: 10.1111/cbdd.12227. Epub 2013 Oct 30.
10
Small molecule regulation of protein conformation by binding in the Flap of HIV protease.
ACS Chem Biol. 2013;8(6):1223-31. doi: 10.1021/cb300611p. Epub 2013 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验