Suppr超能文献

通过大规模结合自由能计算进行整合酶抑制剂的虚拟筛选:SAMPL4挑战

Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge.

作者信息

Gallicchio Emilio, Deng Nanjie, He Peng, Wickstrom Lauren, Perryman Alexander L, Santiago Daniel N, Forli Stefano, Olson Arthur J, Levy Ronald M

机构信息

Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA,

出版信息

J Comput Aided Mol Des. 2014 Apr;28(4):475-90. doi: 10.1007/s10822-014-9711-9. Epub 2014 Feb 7.

Abstract

As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.

摘要

作为SAMPL4盲测挑战的一部分,已将经过筛选的AutoDock Vina配体对接预测结果以及大规模结合能分布分析方法的结合自由能计算应用于对HIV整合酶蛋白LEDGF位点候选结合物聚焦文库的虚拟筛选。该计算方案利用对接和高级原子模型来提高富集度。我们的盲测预测富集因子在所有计算提交结果中排名第一,在总体排名中位列第二。据我们所知,这项工作代表了基于全原子物理的结合自由能模型在大规模虚拟筛选中的首次应用实例。从对接构象开始,总共进行了285次并行哈密顿复制交换分子动力学绝对蛋白质-配体结合自由能模拟。模拟设置完全自动化,计算分布在多个计算资源上,并在6周内完成。对接构象的准确性以及结合自由能估计中包含分子内应变和熵损失是该方法成功的主要因素。缺乏足够的时间和计算资源来研究配体的其他质子化状态是预测错误的主要原因。该实验证明了结合自由能建模在先导优化过程中对具有挑战性的聚焦配体文库虚拟筛选中提高命中率的适用性。

相似文献

1
Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):475-90. doi: 10.1007/s10822-014-9711-9. Epub 2014 Feb 7.
3
Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):417-27. doi: 10.1007/s10822-014-9715-5. Epub 2014 Jan 29.
4
Virtual screening of the SAMPL4 blinded HIV integrase inhibitors dataset.
J Comput Aided Mol Des. 2014 Apr;28(4):455-62. doi: 10.1007/s10822-014-9707-5. Epub 2014 Jan 24.
5
Blind prediction of HIV integrase binding from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):327-45. doi: 10.1007/s10822-014-9723-5. Epub 2014 Mar 5.
6
BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge.
J Comput Aided Mol Des. 2015 Apr;29(4):315-25. doi: 10.1007/s10822-014-9795-2. Epub 2015 Mar 1.
8
SAMPL4 & DOCK3.7: lessons for automated docking procedures.
J Comput Aided Mol Des. 2014 Mar;28(3):201-9. doi: 10.1007/s10822-014-9722-6. Epub 2014 Feb 11.
10
Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.
J Comput Aided Mol Des. 2014 Apr;28(4):363-73. doi: 10.1007/s10822-013-9702-2. Epub 2014 Jan 21.

引用本文的文献

2
Binding Selectivity Analysis from Alchemical Receptor Hopping and Swapping Free Energy Calculations.
J Phys Chem B. 2024 Nov 7;128(44):10841-10852. doi: 10.1021/acs.jpcb.4c05732. Epub 2024 Oct 29.
5
Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid.
J Comput Aided Mol Des. 2022 Mar;36(3):193-203. doi: 10.1007/s10822-022-00446-5. Epub 2022 Mar 9.
6
Application of the alchemical transfer and potential of mean force methods to the SAMPL8 host-guest blinded challenge.
J Comput Aided Mol Des. 2022 Jan;36(1):63-76. doi: 10.1007/s10822-021-00437-y. Epub 2022 Jan 21.
7
Best Practices for Alchemical Free Energy Calculations [Article v1.0].
Living J Comput Mol Sci. 2020;2(1). doi: 10.33011/livecoms.2.1.18378.
8
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.
9
Protein storytelling through physics.
Science. 2020 Nov 27;370(6520). doi: 10.1126/science.aaz3041.
10
Inclusion of enclosed hydration effects in the binding free energy estimation of dopamine D3 receptor complexes.
PLoS One. 2019 Sep 30;14(9):e0222902. doi: 10.1371/journal.pone.0222902. eCollection 2019.

本文引用的文献

3
Blind prediction of HIV integrase binding from the SAMPL4 challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):327-45. doi: 10.1007/s10822-014-9723-5. Epub 2014 Mar 5.
4
Interrogating HIV integrase for compounds that bind--a SAMPL challenge.
J Comput Aided Mol Des. 2014 Apr;28(4):347-62. doi: 10.1007/s10822-014-9721-7. Epub 2014 Feb 16.
6
Combining in silico and in cerebro approaches for virtual screening and pose prediction in SAMPL4.
J Comput Aided Mol Des. 2014 Apr;28(4):363-73. doi: 10.1007/s10822-013-9702-2. Epub 2014 Jan 21.
7
Allosteric inhibition of HIV-1 integrase activity.
Curr Opin Chem Biol. 2013 Jun;17(3):339-45. doi: 10.1016/j.cbpa.2013.04.010. Epub 2013 May 3.
8
Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8690-5. doi: 10.1073/pnas.1300703110. Epub 2013 Apr 22.
9
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
10
Perspective: Alchemical free energy calculations for drug discovery.
J Chem Phys. 2012 Dec 21;137(23):230901. doi: 10.1063/1.4769292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验