Suppr超能文献

利用圆窗记录的电信号预测缺失的外毛细胞位置。

Predicting the location of missing outer hair cells using the electrical signal recorded at the round window.

作者信息

Chertoff Mark E, Earl Brian R, Diaz Francisco J, Sorensen Janna L, Thomas Megan L A, Kamerer Aryn M, Peppi Marcello

机构信息

Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas 66160.

Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati, Ohio 45267.

出版信息

J Acoust Soc Am. 2014 Sep;136(3):1212. doi: 10.1121/1.4890641.

Abstract

The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels.

摘要

记录在圆窗处的电信号用于估计缺失的外毛细胞的位置。在高通滤波噪声条件下,记录耳蜗对低频纯音的反应。通过过度暴露于特定频率的纯音或激光来造成耳蜗损伤。在沿隔板存在持续性损伤的动物中,随着高通截止频率的增加,耳蜗反应的幅度增大,最终达到平稳状态。平稳状态开始时的耳蜗距离与外毛细胞丢失的解剖学起始部位相关。一个数学模型复制了生理数据,但仅限于中基底转存在持续性毛细胞丢失的情况。通过记录应用哇巴因前后的反应来确定神经对耳蜗反应的贡献。应用哇巴因消除或降低了来自耳蜗约两圈的听觉神经活动。对于中等信号强度,耳蜗反应的幅度降低,在较高信号强度时影响有限,这表明在高信号强度时耳蜗反应以外毛细胞电流为主,在低至中等信号强度时以神经电位为主。

相似文献

2
The potential use of low-frequency tones to locate regions of outer hair cell loss.
Hear Res. 2016 Dec;342:39-47. doi: 10.1016/j.heares.2016.09.006. Epub 2016 Sep 24.
3
Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
J Acoust Soc Am. 2012 Nov;132(5):3351-62. doi: 10.1121/1.4757746.
4
An analytic approach to identifying the sources of the low-frequency round window cochlear response.
Hear Res. 2019 Apr;375:53-65. doi: 10.1016/j.heares.2019.02.001. Epub 2019 Feb 15.
5
Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
Hear Res. 1989 May;39(1-2):189-202. doi: 10.1016/0378-5955(89)90090-7.
6
Paired measurements of cochlear function and hair cell count in Dutch-belted rabbits with noise-induced hearing loss.
Hear Res. 2020 Jan;385:107845. doi: 10.1016/j.heares.2019.107845. Epub 2019 Nov 15.
7
Detection of intracochlear damage with cochlear implantation in a gerbil model of hearing loss.
Otol Neurotol. 2011 Oct;32(8):1370-8. doi: 10.1097/MAO.0b013e31822f09f2.
8
Histopathological differences between temporary and permanent threshold shift.
Hear Res. 2000 Jan;139(1-2):13-30. doi: 10.1016/s0378-5955(99)00163-x.
9
Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
Hear Res. 2012 Mar;285(1-2):29-39. doi: 10.1016/j.heares.2012.01.013. Epub 2012 Feb 6.

引用本文的文献

1
Firing Rate Adaptation of the Human Auditory Nerve Optimizes Neural Signal-to-Noise Ratios.
J Assoc Res Otolaryngol. 2022 Jun;23(3):365-378. doi: 10.1007/s10162-022-00841-7. Epub 2022 Mar 7.
2
An analytic approach to identifying the sources of the low-frequency round window cochlear response.
Hear Res. 2019 Apr;375:53-65. doi: 10.1016/j.heares.2019.02.001. Epub 2019 Feb 15.
4
Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
J Assoc Res Otolaryngol. 2018 Aug;19(4):401-419. doi: 10.1007/s10162-018-0668-6. Epub 2018 Jul 16.
5
Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss.
Front Neurosci. 2017 Apr 4;11:169. doi: 10.3389/fnins.2017.00169. eCollection 2017.
6
Ups and Downs in 75 Years of Electrocochleography.
Front Syst Neurosci. 2017 Jan 24;11:2. doi: 10.3389/fnsys.2017.00002. eCollection 2017.
7
The potential use of low-frequency tones to locate regions of outer hair cell loss.
Hear Res. 2016 Dec;342:39-47. doi: 10.1016/j.heares.2016.09.006. Epub 2016 Sep 24.
8
An analysis of cochlear response harmonics: Contribution of neural excitation.
J Acoust Soc Am. 2015 Nov;138(5):2957-63. doi: 10.1121/1.4934556.

本文引用的文献

1
Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
J Acoust Soc Am. 2013 Mar;133(3):1561-71. doi: 10.1121/1.4789005.
2
Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
J Acoust Soc Am. 2012 Nov;132(5):3351-62. doi: 10.1121/1.4757746.
3
A new auditory threshold estimation technique for low frequencies: proof of concept.
Ear Hear. 2013 Jan-Feb;34(1):42-51. doi: 10.1097/AUD.0b013e31825f9bd3.
4
The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
PLoS One. 2012;7(3):e34356. doi: 10.1371/journal.pone.0034356. Epub 2012 Mar 28.
6
Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift.
J Assoc Res Otolaryngol. 2011 Oct;12(5):605-16. doi: 10.1007/s10162-011-0277-0. Epub 2011 Jun 18.
7
Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing.
J Assoc Res Otolaryngol. 2011 Feb;12(1):113-25. doi: 10.1007/s10162-010-0240-5. Epub 2010 Oct 19.
8
Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss.
J Neurosci. 2009 Nov 11;29(45):14077-85. doi: 10.1523/JNEUROSCI.2845-09.2009.
9
Predicting auditory nerve survival using the compound action potential.
Ear Hear. 2010 Feb;31(1):7-21. doi: 10.1097/AUD.0b013e3181ba748c.
10
Laser stimulation of the auditory nerve.
Lasers Surg Med. 2006 Sep;38(8):745-53. doi: 10.1002/lsm.20358.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验