Suppr超能文献

利用高级复合动作电位和高通噪声掩蔽来绘制听神经放电密度。

Mapping auditory nerve firing density using high-level compound action potentials and high-pass noise masking.

机构信息

Department of Hearing and Speech, University of Kansas Medical Center, 3031 Miller, 3901 Rainbow Boulevard, Kansas City, Kansas 66160-7605, USA.

出版信息

J Acoust Soc Am. 2012 Jan;131(1):337-52. doi: 10.1121/1.3664052.

Abstract

Future implementation of regenerative treatments for sensorineural hearing loss may be hindered by the lack of diagnostic tools that specify the target(s) within the cochlea and auditory nerve for delivery of therapeutic agents. Recent research has indicated that the amplitude of high-level compound action potentials (CAPs) is a good predictor of overall auditory nerve survival, but does not pinpoint the location of neural damage. A location-specific estimate of nerve pathology may be possible by using a masking paradigm and high-level CAPs to map auditory nerve firing density throughout the cochlea. This initial study in gerbil utilized a high-pass masking paradigm to determine normative ranges for CAP-derived neural firing density functions using broadband chirp stimuli and low-frequency tonebursts, and to determine if cochlear outer hair cell (OHC) pathology alters the distribution of neural firing in the cochlea. Neural firing distributions for moderate-intensity (60 dB pSPL) chirps were affected by OHC pathology whereas those derived with high-level (90 dB pSPL) chirps were not. These results suggest that CAP-derived neural firing distributions for high-level chirps may provide an estimate of auditory nerve survival that is independent of OHC pathology.

摘要

未来再生治疗传感器神经性听力损失的实施可能会受到缺乏诊断工具的阻碍,这些工具无法确定耳蜗和听神经内的目标,以输送治疗剂。最近的研究表明,高水平复合动作电位(CAP)的幅度是整个听神经存活的良好预测指标,但无法确定神经损伤的位置。通过使用掩蔽范式和高水平 CAP 来绘制整个耳蜗中的听神经放电密度,可以对神经病理进行特定位置的估计。在沙鼠中的这项初步研究利用高通掩蔽范式,使用宽带啁啾刺激和低频音爆发,确定 CAP 衍生的神经放电密度函数的正常范围,并确定耳蜗外毛细胞(OHC)病变是否改变耳蜗中的神经放电分布。中强度(60 dB pSPL)啁啾的神经放电分布受到 OHC 病变的影响,而高强度(90 dB pSPL)啁啾的神经放电分布则没有。这些结果表明,高水平啁啾的 CAP 衍生神经放电分布可能提供一种独立于 OHC 病变的听神经存活估计。

相似文献

4
Acoustically Evoked Compound Action Potentials Recorded From Cochlear Implant Users With Preserved Acoustic Hearing.
Ear Hear. 2023;44(5):1061-1077. doi: 10.1097/AUD.0000000000001350. Epub 2023 Aug 17.
5
Predicting auditory nerve survival using the compound action potential.
Ear Hear. 2010 Feb;31(1):7-21. doi: 10.1097/AUD.0b013e3181ba748c.
6
7
Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas.
Brain Res. 2007 Feb 23;1134(1):122-30. doi: 10.1016/j.brainres.2006.11.078. Epub 2007 Jan 2.
8
The potential use of low-frequency tones to locate regions of outer hair cell loss.
Hear Res. 2016 Dec;342:39-47. doi: 10.1016/j.heares.2016.09.006. Epub 2016 Sep 24.
9
A new auditory threshold estimation technique for low frequencies: proof of concept.
Ear Hear. 2013 Jan-Feb;34(1):42-51. doi: 10.1097/AUD.0b013e31825f9bd3.
10
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
Hear Res. 2015 Dec;330(Pt B):191-9. doi: 10.1016/j.heares.2015.02.009. Epub 2015 Mar 11.

引用本文的文献

1
Developing a Calibration Method to Minimize Variability in Auditory Evoked Potentials.
J Assoc Res Otolaryngol. 2025 Apr;26(2):111-126. doi: 10.1007/s10162-025-00982-5. Epub 2025 Mar 21.
4
An analytic approach to identifying the sources of the low-frequency round window cochlear response.
Hear Res. 2019 Apr;375:53-65. doi: 10.1016/j.heares.2019.02.001. Epub 2019 Feb 15.
5
Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
J Neurosci. 2018 Aug 1;38(31):6949-6966. doi: 10.1523/JNEUROSCI.3328-17.2018. Epub 2018 Jun 29.
6
On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms.
Ear Hear. 2017 Mar/Apr;38(2):135-148. doi: 10.1097/AUD.0000000000000388.
7
The potential use of low-frequency tones to locate regions of outer hair cell loss.
Hear Res. 2016 Dec;342:39-47. doi: 10.1016/j.heares.2016.09.006. Epub 2016 Sep 24.
8
10
Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise.
J Acoust Soc Am. 2012 Nov;132(5):3351-62. doi: 10.1121/1.4757746.

本文引用的文献

1
Click- and chirp-evoked human compound action potentials.
J Acoust Soc Am. 2010 May;127(5):2992-6. doi: 10.1121/1.3372756.
3
Auditory brain stem responses evoked by different chirps based on different delay models.
J Am Acad Audiol. 2010 Jul-Aug;21(7):452-60. doi: 10.3766/jaaa.21.7.4.
5
Cochlear implantation in children with auditory neuropathy spectrum disorder.
Ear Hear. 2010 Jun;31(3):325-35. doi: 10.1097/AUD.0b013e3181ce693b.
6
Improved sensitivity of electrocochleography in the diagnosis of Meniere's disease.
Int J Audiol. 2009 Nov;48(11):811-9. doi: 10.3109/14992020903019338.
7
Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss.
J Neurosci. 2009 Nov 11;29(45):14077-85. doi: 10.1523/JNEUROSCI.2845-09.2009.
8
Predicting auditory nerve survival using the compound action potential.
Ear Hear. 2010 Feb;31(1):7-21. doi: 10.1097/AUD.0b013e3181ba748c.
9
The effects of sound conditioning on gentamicin-induced vestibulocochlear toxicity in gerbils.
Laryngoscope. 2009 Jun;119(6):1166-70. doi: 10.1002/lary.20145.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验