Department of Chemistry, Trinity University, San Antonio, TX 78212-7200, USA.
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
Science. 2014 Sep 26;345(6204):1599-602. doi: 10.1126/science.1256018. Epub 2014 Sep 4.
We provide direct evidence of a water-mediated reaction mechanism for room-temperature CO oxidation over Au/TiO2 catalysts. A hydrogen/deuterium kinetic isotope effect of nearly 2 implicates O-H(D) bond breaking in the rate-determining step. Kinetics and in situ infrared spectroscopy experiments showed that the coverage of weakly adsorbed water on TiO2 largely determines catalyst activity by changing the number of active sites. Density functional theory calculations indicated that proton transfer at the metal-support interface facilitates O2 binding and activation; the resulting Au-OOH species readily reacts with adsorbed Au-CO, yielding Au-COOH. Au-COOH decomposition involves proton transfer to water and was suggested to be rate determining. These results provide a unified explanation to disparate literature results, clearly defining the mechanistic roles of water, support OH groups, and the metal-support interface.
我们提供了直接证据,证明在 Au/TiO2 催化剂上室温 CO 氧化反应存在水介导的反应机制。氢/氘动力学同位素效应近 2,表明在速率决定步骤中存在 O-H(D)键断裂。动力学和原位红外光谱实验表明,TiO2 上弱吸附水的覆盖率通过改变活性位点数来极大地决定催化剂活性。密度泛函理论计算表明,金属-载体界面的质子转移促进了 O2 的结合和活化;生成的 Au-OOH 物种容易与吸附的 Au-CO 反应,生成 Au-COOH。Au-COOH 的分解涉及质子向水的转移,并被认为是速率决定步骤。这些结果为不同的文献结果提供了一个统一的解释,明确了水、载体 OH 基团和金属-载体界面的作用机制。