Shapiro Orr H, Fernandez Vicente I, Garren Melissa, Guasto Jeffrey S, Debaillon-Vesque François P, Kramarsky-Winter Esti, Vardi Assaf, Stocker Roman
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13391-6. doi: 10.1073/pnas.1323094111. Epub 2014 Sep 5.
The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.
珊瑚与其周围环境之间营养物质和溶解气体的交换是珊瑚群落生长和珊瑚礁生产力的关键决定因素。迄今为止,人们一直认为这种交换受限于通过从珊瑚表面延伸1-2毫米的无搅拌边界层的分子扩散,珊瑚完全依赖外部水流来克服这一限制。在此,我们提供了直接的微观证据,表明珊瑚能够通过覆盖其整个表面的能动表皮纤毛驱动的强烈涡旋流来主动增强物质传输。纤毛摆动产生准稳态的反向旋转涡旋阵列,有力地搅动从珊瑚表面向上延伸达2毫米的一层水。我们表明,在低环境流速下,这些涡旋而非分子扩散控制着珊瑚与其周围环境之间营养物质和氧气的交换,将传质速率提高了多达400%。珊瑚搅动其边界层的这种能力改变了我们对珊瑚表面微环境的认知方式,揭示了一种与环境水流对传输的被动增强互补的主动机制。这些发现扩展了我们对珊瑚礁中物质传输过程的理解,并可能为珊瑚和珊瑚礁的进化成功提供新的线索。