Suppr超能文献

谷胱甘肽还原酶介导的具有抗菌特性的含碲纳米结构的合成。

Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

作者信息

Pugin Benoit, Cornejo Fabián A, Muñoz-Díaz Pablo, Muñoz-Villagrán Claudia M, Vargas-Pérez Joaquín I, Arenas Felipe A, Vásquez Claudio C

机构信息

Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile

出版信息

Appl Environ Microbiol. 2014 Nov;80(22):7061-70. doi: 10.1128/AEM.02207-14. Epub 2014 Sep 5.

Abstract

Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells.

摘要

碲是一种属于元素周期表第16族的类金属,具有非常有趣的物理和化学性质,最近因其在纳米技术中的应用而备受关注。在这种背景下,与化学合成相比,利用微生物合成纳米结构成为一种环保且令人兴奋的方法。为了生成含碲的纳米结构,细菌通过酶将亚碲酸盐还原为元素碲。在这项工作中,我们采用经典的生化方法,从南极细菌假单胞菌属菌株BNF22中寻找一种新型亚碲酸盐还原酶,并利用它来生成含碲的纳米结构。一种新的亚碲酸盐还原酶被鉴定为谷胱甘肽还原酶,随后在大肠杆菌中过量表达。对该酶的表征表明,它是一种依赖NADPH的亚碲酸盐还原酶,在30°C和pH 9.0时具有最佳还原活性。最后,该酶能够生成尺寸约为68纳米的含碲纳米结构,这些纳米结构对大肠杆菌表现出有趣的抗菌特性,对真核细胞没有明显的细胞毒性。

相似文献

1
Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.
Appl Environ Microbiol. 2014 Nov;80(22):7061-70. doi: 10.1128/AEM.02207-14. Epub 2014 Sep 5.
3
The putative phosphate transporter PitB (PP1373) is involved in tellurite uptake in KT2440.
Microbiology (Reading). 2021 Feb;167(2). doi: 10.1099/mic.0.001002.
4
Morphology-tunable tellurium nanomaterials produced by the tellurite-reducing bacterium Lysinibacillus sp. ZYM-1.
Environ Sci Pollut Res Int. 2018 Jul;25(21):20756-20768. doi: 10.1007/s11356-018-2257-y. Epub 2018 May 13.
5
Enzyme(s) responsible for tellurite reducing activity in a moderately halophilic bacterium, Salinicoccus iranensis strain QW6.
Extremophiles. 2014 Nov;18(6):953-61. doi: 10.1007/s00792-014-0665-6. Epub 2014 Jul 2.
7
A comparative analysis of tellurite detoxification by members of the genus Shewanella.
Arch Microbiol. 2018 Mar;200(2):267-273. doi: 10.1007/s00203-017-1438-2. Epub 2017 Oct 11.
10
Tellurite-induced carbonylation of the Escherichia coli pyruvate dehydrogenase multienzyme complex.
Arch Microbiol. 2010 Nov;192(11):969-73. doi: 10.1007/s00203-010-0624-2. Epub 2010 Sep 7.

引用本文的文献

4
6
Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus sp. AB1 with antibacterial activity.
Front Microbiol. 2022 Oct 5;13:1020179. doi: 10.3389/fmicb.2022.1020179. eCollection 2022.
7
Green synthesis of metalloid nanoparticles and its biological applications: A review.
Front Chem. 2022 Sep 26;10:994724. doi: 10.3389/fchem.2022.994724. eCollection 2022.
8
Anaerobiosis favors biosynthesis of single and multi-element nanostructures.
PLoS One. 2022 Oct 7;17(10):e0273392. doi: 10.1371/journal.pone.0273392. eCollection 2022.
10
Impact of Tellurite on the Metabolism of AL109b With Flagellin Production Explaining High Reduction Capacity.
Front Microbiol. 2021 Sep 7;12:718963. doi: 10.3389/fmicb.2021.718963. eCollection 2021.

本文引用的文献

1
On the mechanism underlying tellurite reduction by Aeromonas caviae ST dihydrolipoamide dehydrogenase.
Biochimie. 2014 Jul;102:174-82. doi: 10.1016/j.biochi.2014.03.008. Epub 2014 Mar 26.
4
Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa.
Biotechnol Bioeng. 2014 May;111(5):858-65. doi: 10.1002/bit.25147. Epub 2013 Nov 26.
6
Antibacterial activities of tellurium nanomaterials.
Chem Asian J. 2012 May;7(5):930-4. doi: 10.1002/asia.201101006. Epub 2012 Mar 21.
7
CODEHOP PCR and CODEHOP PCR primer design.
Methods Mol Biol. 2011;687:57-73. doi: 10.1007/978-1-60761-944-4_5.
8
Simple, fast, and sensitive method for quantification of tellurite in culture media.
Appl Environ Microbiol. 2010 Jul;76(14):4901-4. doi: 10.1128/AEM.00598-10. Epub 2010 Jun 4.
9
Biological synthesis of metal nanoparticles by microbes.
Adv Colloid Interface Sci. 2010 Apr 22;156(1-2):1-13. doi: 10.1016/j.cis.2010.02.001. Epub 2010 Feb 10.
10
Tellurite: history, oxidative stress, and molecular mechanisms of resistance.
FEMS Microbiol Rev. 2009 Jul;33(4):820-32. doi: 10.1111/j.1574-6976.2009.00177.x. Epub 2009 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验