Department of Biotechnology, Pondicherry University, Kalapet, Puducherry 605014, India.
Adv Colloid Interface Sci. 2010 Apr 22;156(1-2):1-13. doi: 10.1016/j.cis.2010.02.001. Epub 2010 Feb 10.
An array of physical, chemical and biological methods have been used to synthesize nanomaterials. In order to synthesize noble metal nanoparticles of particular shape and size specific methodologies have been formulated. Although ultraviolet irradiation, aerosol technologies, lithography, laser ablation, ultrasonic fields, and photochemical reduction techniques have been used successfully to produce nanoparticles, they remain expensive and involve the use of hazardous chemicals. Therefore, there is a growing concern to develop environment-friendly and sustainable methods. Since the synthesis of nanoparticles of different compositions, sizes, shapes and controlled dispersity is an important aspect of nanotechnology new cost-effective procedures are being developed. Microbial synthesis of nanoparticles is a green chemistry approach that interconnects nanotechnology and microbial biotechnology. Biosynthesis of gold, silver, gold-silver alloy, selenium, tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, magnetite and uraninite nanoparticles by bacteria, actinomycetes, fungi, yeasts and viruses have been reported. However, despite the stability, biological nanoparticles are not monodispersed and the rate of synthesis is slow. To overcome these problems, several factors such as microbial cultivation methods and the extraction techniques have to be optimized and the combinatorial approach such as photobiological methods may be used. Cellular, biochemical and molecular mechanisms that mediate the synthesis of biological nanoparticles should be studied in detail to increase the rate of synthesis and improve properties of nanoparticles. Owing to the rich biodiversity of microbes, their potential as biological materials for nanoparticle synthesis is yet to be fully explored. In this review, we present the current status of microbial synthesis and applications of metal nanoparticles.
已经开发出了一系列物理、化学和生物方法来合成纳米材料。为了合成特定形状和尺寸的贵金属纳米粒子,已经制定了特定的方法。虽然已经成功地使用紫外线照射、气溶胶技术、光刻、激光烧蚀、超声场和光化学还原技术来生产纳米粒子,但这些方法仍然昂贵且涉及使用危险化学品。因此,人们越来越关注开发环保和可持续的方法。由于合成不同组成、尺寸、形状和可控分散性的纳米粒子是纳米技术的一个重要方面,因此正在开发新的具有成本效益的方法。微生物合成纳米粒子是一种将纳米技术和微生物生物技术联系起来的绿色化学方法。已经报道了细菌、放线菌、真菌、酵母和病毒合成金、银、金银合金、硒、碲、铂、钯、二氧化硅、二氧化钛、氧化锆、量子点、磁铁矿和铀矿纳米粒子。然而,尽管生物纳米粒子稳定,但它们不是单分散的,并且合成速度较慢。为了克服这些问题,必须优化微生物培养方法和提取技术等几个因素,并且可以使用组合方法,如光生物方法。应该详细研究介导生物纳米粒子合成的细胞、生化和分子机制,以提高合成速度并改善纳米粒子的性能。由于微生物的丰富生物多样性,它们作为生物材料用于纳米粒子合成的潜力尚未得到充分探索。在这篇综述中,我们介绍了微生物合成和金属纳米粒子应用的现状。
Adv Colloid Interface Sci. 2010-2-10
Appl Microbiol Biotechnol. 2006-1
Biotechnol J. 2010-10
Crit Rev Biotechnol. 2011-6-22
Chemosphere. 2020-10-9
Adv Colloid Interface Sci. 2012-12-29
Appl Microbiol Biotechnol. 2011-4-12
Drug Des Devel Ther. 2025-5-27
Polymers (Basel). 2025-5-21
Nanomaterials (Basel). 2025-2-7