Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
BMC Biotechnol. 2014 Sep 5;14:82. doi: 10.1186/1472-6750-14-82.
Superparamagnetic iron oxide nanoparticles (MNP) offer several advantages for applications in biomedical and biotechnological research. In particular, MNP-based immobilization of enzymes allows high surface-to-volume ratio, good dispersibility, easy separation of enzymes from the reaction mixture, and reuse by applying an external magnetic field. In a biotechnological perspective, extremophilic enzymes hold great promise as they often can be used under non-conventional harsh conditions, which may result in substrate transformations that are not achievable with normal enzymes. This prompted us to investigate the effect of MNP bioconjugation on the catalytic properties of a thermostable carboxypeptidase from the hyperthermophilic archaeon Sulfolobus solfataricus (CPSso), which exhibits catalytic properties that are useful in synthetic processes.
CPSso was immobilized onto silica-coated iron oxide nanoparticles via NiNTA-His tag site-directed conjugation. Following the immobilization, CPSso acquired distinctly higher long-term stability at room temperature compared to the free native enzyme, which, in contrast, underwent extensive inactivation after 72 h incubation, thus suggesting a potential utilization of this enzyme under low energy consumption. Moreover, CPSso conjugation also resulted in a significantly higher stability in organic solvents at 40°C, which made it possible to synthesize N-blocked amino acids in remarkably higher yields compared to those of free enzyme.
The nanobioconjugate of CPSso immobilized on silica-coated magnetic nanoparticles exhibited enhanced stability in aqueous media at room temperature as well as in different organic solvents. The improved stability in ethanol paves the way to possible applications of immobilized CPSso, in particular as a biocatalyst for the synthesis of N-blocked amino acids. Another potential application might be amino acid racemate resolution, a critical and expensive step in chemical synthesis.
超顺磁性氧化铁纳米粒子(MNP)在生物医学和生物技术研究中的应用具有多种优势。特别是,基于 MNP 的酶固定化可以实现高的表面积与体积比、良好的分散性、酶与反应混合物的易于分离以及通过施加外部磁场实现的重复使用。从生物技术的角度来看,极端酶具有很大的应用潜力,因为它们通常可以在非常规苛刻条件下使用,这可能导致无法用正常酶实现的底物转化。这促使我们研究 MNP 生物偶联对来自嗜热古菌 Sulfolobus solfataricus 的热稳定羧肽酶(CPSso)的催化性质的影响,该酶具有在合成过程中有用的催化性质。
CPSso 通过 NiNTA-His 标签位定向偶联固定到二氧化硅涂覆的氧化铁纳米粒子上。固定化后,CPSso 在室温下表现出明显更高的长期稳定性,与自由天然酶相比,后者在 72 小时孵育后经历了广泛的失活,因此表明该酶可能在低能耗下得到利用。此外,CPSso 的偶联还导致其在 40°C 的有机溶剂中具有显著更高的稳定性,这使得在显著更高的产率下合成 N-封端氨基酸成为可能,与游离酶相比。
固定在二氧化硅涂覆的磁性纳米粒子上的 CPSso 的纳米生物偶联物在室温下的水介质以及不同的有机溶剂中表现出增强的稳定性。在乙醇中的稳定性提高为固定化 CPSso 的可能应用铺平了道路,特别是作为用于合成 N-封端氨基酸的生物催化剂。另一个潜在的应用可能是氨基酸外消旋体的拆分,这是化学合成中一个关键且昂贵的步骤。