Suppr超能文献

特定个体的股骨-髋臼唇接触模式复杂,在无症状髋关节和伴有股骨髋臼撞击症的髋关节中有所不同。

Subject-specific patterns of femur-labrum contact are complex and vary in asymptomatic hips and hips with femoroacetabular impingement.

作者信息

Kapron Ashley L, Aoki Stephen K, Peters Christopher L, Anderson Andrew E

机构信息

Department of Orthopaedics, University of Utah, 590 Wakara Way, Rm A100, Salt Lake City, UT, 84108, USA.

出版信息

Clin Orthop Relat Res. 2014 Dec;472(12):3912-22. doi: 10.1007/s11999-014-3919-9. Epub 2014 Sep 6.

Abstract

BACKGROUND

Femoroacetabular impingement (FAI) may constrain hip articulation and cause chondrolabral damage, but to our knowledge, in vivo articulation and femur-labrum contact patterns have not been quantified.

PURPOSE

In this exploratory study, we describe the use of high-speed dual-fluoroscopy and model-based tracking to dynamically measure in vivo hip articulation and estimate the location of femur-labrum contact in six asymptomatic hips and three hips with FAI during the impingement examination. We asked: (1) Does femur-labrum contact occur at the terminal position of impingement? (2) Could range of motion (ROM) during the impingement examination appear decreased in hips with FAI? (3) Does the location of femur-labrum contact coincide with that of minimum bone-to-bone distance? (4) In the patients with FAI, does the location of femur-labrum contact qualitatively correspond to the location of damage observed intraoperatively?

METHODS

High-speed dual-fluoroscopy images were acquired continuously as the impingement examination was performed. CT arthrogram images of all subjects were segmented to generate three-dimensional (3-D) surfaces for the pelvis, femur, and labrum. Model-based tracking of the fluoroscopy images enabled dynamic kinematic observation of the 3-D surfaces. At the terminal position of the examination, the region of minimal bone-to-bone distance was compared with the estimated location of femur-labrum contact. Each patient with FAI underwent hip arthroscopy; the location of femur-labrum contact was compared qualitatively with damage found during surgery. As an exploratory study, statistics were not performed.

RESULTS

Femur-labrum contact was observed in both groups, but patterns of contact were subject-specific. At the terminal position of the impingement examination, internal rotation and adduction angles for each of the patients with FAI were less than the 95% confidence intervals (CIs) for the asymptomatic control subjects. The location of minimum bone-to-bone distance agreed with the region of femur-labrum contact in two of nine hips. The locations of chondrolabral damage identified during surgery qualitatively coincided with the region of femur-labrum contact.

CONCLUSIONS

Dual-fluoroscopy and model-based tracking provided the ability to assess hip kinematics in vivo during the entire impingement examination. The high variability in observed labrum-femur contact patterns at the terminal position of the examination provides evidence that subtle anatomic features could dictate underlying hip biomechanics. Although femur-labrum contact occurs in asymptomatic and symptomatic hips at the terminal position of the impingement examination, contact may occur at reduced adduction and internal rotation in patients with FAI. Use of minimum bone-to-bone distance may not appropriately identify the region of femur-labrum contact. Additional research, using a larger cohort and appropriate statistical tests, is required to confirm the findings of this exploratory study.

摘要

背景

股骨髋臼撞击症(FAI)可能限制髋关节活动并导致盂唇软骨损伤,但据我们所知,体内关节活动及股骨与盂唇的接触模式尚未得到量化。

目的

在这项探索性研究中,我们描述了如何使用高速双荧光透视及基于模型的追踪技术,动态测量体内髋关节活动,并在撞击检查过程中估计六例无症状髋关节及三例FAI髋关节中股骨与盂唇的接触位置。我们提出了以下问题:(1)股骨与盂唇的接触是否发生在撞击的终末位置?(2)FAI髋关节在撞击检查过程中的活动范围(ROM)是否会减小?(3)股骨与盂唇的接触位置是否与最小骨间距位置一致?(4)在FAI患者中,股骨与盂唇的接触位置在质量上是否与术中观察到的损伤位置相符?

方法

在进行撞击检查时持续采集高速双荧光透视图像。对所有受试者的CT关节造影图像进行分割,以生成骨盆、股骨和盂唇的三维(3-D)表面。基于模型的荧光透视图像追踪能够对3-D表面进行动态运动学观察。在检查的终末位置,将最小骨间距区域与估计的股骨与盂唇接触位置进行比较。每位FAI患者均接受了髋关节镜检查;将股骨与盂唇的接触位置与手术中发现的损伤进行质量上的比较。作为一项探索性研究,未进行统计学分析。

结果

两组均观察到股骨与盂唇的接触,但接触模式因个体而异。在撞击检查的终末位置,每位FAI患者的内旋和内收角度均小于无症状对照受试者的95%置信区间(CIs)。九个髋关节中有两个的最小骨间距位置与股骨与盂唇的接触区域一致。手术中确定的盂唇软骨损伤位置在质量上与股骨与盂唇的接触区域相符。

结论

双荧光透视及基于模型的追踪技术能够在整个撞击检查过程中评估体内髋关节运动学。在检查终末位置观察到的盂唇与股骨接触模式高度可变,这表明细微的解剖特征可能决定潜在的髋关节生物力学。尽管在撞击检查的终末位置,无症状和有症状的髋关节中均会发生股骨与盂唇的接触,但FAI患者的接触可能发生在内收和内旋减小的情况下。使用最小骨间距可能无法准确识别股骨与盂唇的接触区域。需要使用更大的队列并进行适当的统计检验进行进一步研究,以证实这项探索性研究的结果。

相似文献

1
Subject-specific patterns of femur-labrum contact are complex and vary in asymptomatic hips and hips with femoroacetabular impingement.
Clin Orthop Relat Res. 2014 Dec;472(12):3912-22. doi: 10.1007/s11999-014-3919-9. Epub 2014 Sep 6.
3
In-vivo hip arthrokinematics during supine clinical exams: Application to the study of femoroacetabular impingement.
J Biomech. 2015 Aug 20;48(11):2879-86. doi: 10.1016/j.jbiomech.2015.04.022. Epub 2015 Apr 22.
4
What MRI Findings Predict Failure 10 Years After Surgery for Femoroacetabular Impingement?
Clin Orthop Relat Res. 2017 Apr;475(4):1192-1207. doi: 10.1007/s11999-016-5040-8.
5
Does the Capital Femoral Physis Bony MorphologyDiffer in Children with Symptomatic Cam-type Femoroacetabular Impingement.
Clin Orthop Relat Res. 2021 May 1;479(5):922-931. doi: 10.1097/CORR.0000000000001602.
6
What Are the Risk Factors for Revision Surgery After Hip Arthroscopy for Femoroacetabular Impingement at 7-year Followup?
Clin Orthop Relat Res. 2017 Apr;475(4):1169-1177. doi: 10.1007/s11999-016-5115-6.
7
How Does the dGEMRIC Index Change After Surgical Treatment for FAI? A Prospective Controlled Study: Preliminary Results.
Clin Orthop Relat Res. 2017 Apr;475(4):1080-1099. doi: 10.1007/s11999-016-5098-3.
9
Residual deformity is the most common reason for revision hip arthroscopy: a three-dimensional CT study.
Clin Orthop Relat Res. 2015 Apr;473(4):1388-95. doi: 10.1007/s11999-014-4069-9.
10
Can the Femoro-Epiphyseal Acetabular Roof (FEAR) Index Be Used to Distinguish Dysplasia from Impingement?
Clin Orthop Relat Res. 2021 May 1;479(5):962-971. doi: 10.1097/CORR.0000000000001610.

引用本文的文献

2
Large Hip Impingement Area and Subspine Hip Impingement in Patients With Absolute Femoral Retroversion or Decreased Combined Version.
Orthop J Sports Med. 2023 Feb 22;11(2):23259671221148502. doi: 10.1177/23259671221148502. eCollection 2023 Feb.
3
A novel method for measurement of dynamic ischiofemoral space based on MRI and motion capture.
Front Bioeng Biotechnol. 2023 Jan 25;11:1067600. doi: 10.3389/fbioe.2023.1067600. eCollection 2023.
4
Arthroscopic Femoral and Acetabular Osteoplasties Alter the In Vivo Hip Kinematics of Patients With Femoroacetabular Impingement.
Arthrosc Sports Med Rehabil. 2022 Oct 12;4(6):e1961-e1968. doi: 10.1016/j.asmr.2022.08.004. eCollection 2022 Dec.
5
Open MRI assessment of anterior femoroacetabular clearance in active and passive impingement-provoking postures.
Bone Jt Open. 2021 Nov;2(11):988-996. doi: 10.1302/2633-1462.211.BJO-2021-0143.
8
Inclusion of the Acetabular Labrum Reduces Simulated Range of Motion of the Hip Compared With Bone Contact Models.
Arthrosc Sports Med Rehabil. 2020 Oct 6;2(6):e779-e787. doi: 10.1016/j.asmr.2020.07.014. eCollection 2020 Dec.
9
Reliability of hip range of motion measurement among experienced arthroscopic hip preservation surgeons.
J Hip Preserv Surg. 2019 Dec 12;7(1):77-84. doi: 10.1093/jhps/hnz062. eCollection 2020 Jan.

本文引用的文献

1
2
Kinematic and kinetic differences during walking in patients with and without symptomatic femoroacetabular impingement.
Clin Biomech (Bristol). 2013 Jun;28(5):519-23. doi: 10.1016/j.clinbiomech.2013.05.002. Epub 2013 May 26.
4
Can the alpha angle assessment of cam impingement predict acetabular cartilage delamination?
Clin Orthop Relat Res. 2012 Dec;470(12):3361-7. doi: 10.1007/s11999-012-2601-3.
5
Range of motion in femoroacetabular impingement.
Acta Orthop Belg. 2012 Jun;78(3):327-32.
6
Hip morphological characteristics and range of internal rotation in femoroacetabular impingement.
Am J Sports Med. 2012 Jun;40(6):1329-36. doi: 10.1177/0363546512441328. Epub 2012 Apr 2.
7
Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement.
Arthroscopy. 2012 Feb;28(2):204-10. doi: 10.1016/j.arthro.2011.11.005.
8
Finite element prediction of cartilage contact stresses in normal human hips.
J Orthop Res. 2012 Jul;30(7):1133-9. doi: 10.1002/jor.22040. Epub 2011 Dec 30.
9
Strains across the acetabular labrum during hip motion: a cadaveric model.
Am J Sports Med. 2011 Jul;39 Suppl:92S-102S. doi: 10.1177/0363546511414017.
10
Fluoroscopic demonstration of femoroacetabular impingement during hip arthroscopy.
Arthroscopy. 2011 Jul;27(7):994-1004. doi: 10.1016/j.arthro.2011.01.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验