Suppr超能文献

与前列腺癌患者风险组相关的血浆蛋白谱鉴定。

Identification of plasma protein profiles associated with risk groups of prostate cancer patients.

作者信息

Nordström Malin, Wingren Christer, Rose Carsten, Bjartell Anders, Becker Charlotte, Lilja Hans, Borrebaeck Carl A K

机构信息

Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden; CREATE Health, Lund University, Medicon Village, Lund, Sweden.

出版信息

Proteomics Clin Appl. 2014 Dec;8(11-12):951-62. doi: 10.1002/prca.201300059. Epub 2014 Oct 22.

Abstract

PURPOSE

Early detection of prostate cancer (PC) using prostate-specific antigen (PSA) in blood reduces PC-death among unscreened men. However, due to modest specificity of PSA at commonly used cut-offs, there are urgent needs for additional biomarkers contributing enhanced risk classification among men with modestly elevated PSA.

EXPERIMENTAL DESIGN

Recombinant antibody microarrays were applied for protein expression profiling of 80 plasma samples from routine PSA-measurements, a priori divided into four risk groups, based on levels of total and %free PSA.

RESULTS

The results demonstrated that plasma protein profiles could be identified that pin-pointed PC (a malignant biomarker signature) and most importantly that showed moderate to high correlation with biochemically defined PC risk groups. Notably, the data also implied that the risk group with midrange PSA and low %free PSA, a priori known to be heterogeneous, could be further stratified into two subgroups, more resembling the lowest and highest risk groups, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE

In this pilot study, we have shown that plasma protein biomarker signatures, associated with risk groups of PC, could be identified from crude plasma samples using affinity proteomics. This approach could in the longer perspective provide novel opportunities for improved risk classification of PC patients.

摘要

目的

通过检测血液中的前列腺特异性抗原(PSA)来早期发现前列腺癌(PC),可降低未筛查男性的PC死亡率。然而,由于常用临界值下PSA的特异性一般,迫切需要其他生物标志物来增强PSA轻度升高男性的风险分类。

实验设计

应用重组抗体微阵列对80份来自常规PSA检测的血浆样本进行蛋白质表达谱分析,这些样本根据总PSA和游离PSA百分比水平预先分为四个风险组。

结果

结果表明,可以识别出能精准定位PC的血浆蛋白质谱(一种恶性生物标志物特征),最重要的是,这些蛋白质谱与生化定义的PC风险组显示出中度至高相关性。值得注意的是,数据还表明,PSA处于中等范围且游离PSA百分比低的风险组(已知该组具有异质性)可进一步分为两个亚组,分别更类似于最低风险组和最高风险组。

结论及临床意义

在这项初步研究中,我们表明使用亲和蛋白质组学方法可从粗血浆样本中识别出与PC风险组相关的血浆蛋白质生物标志物特征。从长远来看,这种方法可为改善PC患者的风险分类提供新的机会。

相似文献

1
Identification of plasma protein profiles associated with risk groups of prostate cancer patients.
Proteomics Clin Appl. 2014 Dec;8(11-12):951-62. doi: 10.1002/prca.201300059. Epub 2014 Oct 22.
2
Identification of a serum biomarker signature associated with metastatic prostate cancer.
Proteomics Clin Appl. 2021 May;15(2-3):e2000025. doi: 10.1002/prca.202000025. Epub 2021 May 4.
3
Zinc α2-glycoprotein as a potential novel urine biomarker for the early diagnosis of prostate cancer.
BJU Int. 2012 Dec;110(11 Pt B):E688-93. doi: 10.1111/j.1464-410X.2012.11501.x. Epub 2012 Sep 28.
4
Levels of plasma glycan-binding auto-IgG biomarkers improve the accuracy of prostate cancer diagnosis.
Mol Cell Biochem. 2021 Jan;476(1):13-22. doi: 10.1007/s11010-020-03876-7. Epub 2020 Aug 20.
9
Can natural killer cell activity help screen patients requiring a biopsy for the diagnosis of prostate cancer?
Int Braz J Urol. 2020 Mar-Apr;46(2):244-252. doi: 10.1590/S1677-5538.IBJU.2019.0268.

引用本文的文献

1
Bead-based microfluidic platforms for multiplex and ultrasensitive immunoassays in clinical diagnosis and treatment.
Mechanobiol Med. 2024 Mar 16;2(2):100063. doi: 10.1016/j.mbm.2024.100063. eCollection 2024 Jun.
2
Uncovering New Biomarkers for Prostate Cancer Through Proteomic and Network Analysis.
Biology (Basel). 2025 Mar 4;14(3):256. doi: 10.3390/biology14030256.
3
Serum Proteomic Signatures in Cervical Cancer: Current Status and Future Directions.
Cancers (Basel). 2024 Apr 24;16(9):1629. doi: 10.3390/cancers16091629.
5
Current applications of antibody microarrays.
Clin Proteomics. 2018 Feb 28;15:7. doi: 10.1186/s12014-018-9184-2. eCollection 2018.
6
Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.
Nat Rev Cancer. 2017 Mar;17(3):199-204. doi: 10.1038/nrc.2016.153. Epub 2017 Feb 3.
7
Multiplexed protein profiling by sequential affinity capture.
Proteomics. 2016 Apr;16(8):1251-6. doi: 10.1002/pmic.201500398. Epub 2016 Mar 31.

本文引用的文献

1
Protein expression profiling of formalin-fixed paraffin-embedded tissue using recombinant antibody microarrays.
J Proteome Res. 2013 Dec 6;12(12):5943-53. doi: 10.1021/pr4003245. Epub 2013 Oct 9.
2
An antibody-based leukocyte-capture microarray for the diagnosis of systemic lupus erythematosus.
PLoS One. 2013;8(3):e58199. doi: 10.1371/journal.pone.0058199. Epub 2013 Mar 13.
3
Inflammation and immune surveillance in cancer.
Semin Cancer Biol. 2012 Feb;22(1):23-32. doi: 10.1016/j.semcancer.2011.12.004. Epub 2011 Dec 24.
4
Recombinant antibodies for the generation of antibody arrays.
Methods Mol Biol. 2011;785:247-62. doi: 10.1007/978-1-61779-286-1_17.
5
Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer.
Clinics (Sao Paulo). 2011;66(7):1143-7. doi: 10.1590/s1807-59322011000700004.
6
Molecular serum portraits in patients with primary breast cancer predict the development of distant metastases.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14252-7. doi: 10.1073/pnas.1103125108. Epub 2011 Aug 15.
7
Tumor markers in prostate cancer I: blood-based markers.
Acta Oncol. 2011 Jun;50 Suppl 1(Suppl 1):61-75. doi: 10.3109/0284186X.2010.542174.
8
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.
Int J Cancer. 2010 Dec 15;127(12):2893-917. doi: 10.1002/ijc.25516.
9
Serum protein profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microarrays.
Mol Cell Proteomics. 2011 May;10(5):M110.005033. doi: 10.1074/mcp.M110.005033. Epub 2011 Feb 24.
10
A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening.
Cancer Epidemiol Biomarkers Prev. 2011 Feb;20(2):255-61. doi: 10.1158/1055-9965.EPI-10-1003. Epub 2010 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验