Yücel Meryem A, Evans Karleyton C, Selb Juliette, Huppert Theodore J, Boas David A, Gagnon Louis
MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 MA, USA.
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129 MA, USA.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):729-35. doi: 10.1016/j.neuroimage.2014.08.052. Epub 2014 Sep 6.
Calibrated functional magnetic resonance imaging (fMRI) is a widely used method to investigate brain function in terms of physiological quantities such as the cerebral metabolic rate of oxygen (CMRO2). The first and one of the most common methods of fMRI calibration is hypercapnic calibration. This is achieved via simultaneous measures of the blood-oxygenation-level dependent (BOLD) and the arterial spin labeling (ASL) signals during a functional task that evokes regional changes in CMRO2. A subsequent acquisition is then required during which the subject inhales carbon dioxide for short periods of time. A calibration constant, typically labeled M, is then estimated from the hypercapnic data and is subsequently used together with the BOLD-ASL recordings to compute evoked changes in CMRO2 during the functional task. The computation of M assumes a constant CMRO2 during the CO2 inhalation, an assumption that has been questioned since the origin of calibrated fMRI. In this study we used diffuse optical tomography (DOT) together with BOLD and ASL--an alternative calibration method that does not require any gas manipulation and therefore no constant CMRO2 assumption--to cross-validate the estimation of M obtained from a traditional hypercapnic calibration. We found a high correlation between the M values (R=0.87, p<0.01) estimated using these two approaches. The findings serve to validate the hypercapnic fMRI calibration technique and suggest that the inter-subject variability routinely obtained for M is reproducible with an alternative method and might therefore reflect inter-subject physiological variability.
校准功能磁共振成像(fMRI)是一种广泛应用的方法,用于根据诸如脑氧代谢率(CMRO2)等生理量来研究脑功能。fMRI校准的第一种也是最常用的方法之一是高碳酸血症校准。这是通过在一项引发CMRO2区域变化的功能任务期间同时测量血氧水平依赖(BOLD)信号和动脉自旋标记(ASL)信号来实现的。随后需要进行一次采集,在此期间受试者短时间吸入二氧化碳。然后根据高碳酸血症数据估计一个校准常数,通常标记为M,随后将其与BOLD-ASL记录一起用于计算功能任务期间诱发的CMRO2变化。M的计算假设在吸入二氧化碳期间CMRO2是恒定的,自校准fMRI出现以来,这一假设就受到了质疑。在本研究中,我们使用扩散光学断层扫描(DOT)以及BOLD和ASL——一种不需要任何气体操作且因此不需要恒定CMRO2假设的替代校准方法——来交叉验证从传统高碳酸血症校准获得的M的估计值。我们发现使用这两种方法估计的M值之间具有高度相关性(R = 0.87,p < 0.01)。这些发现有助于验证高碳酸血症fMRI校准技术,并表明常规获得的M的受试者间变异性可以用另一种方法重现,因此可能反映受试者间的生理变异性。