Suppr超能文献

静息状态下的大脑氧代谢表现出典型的网络特征。

Resting cerebral oxygen metabolism exhibits archetypal network features.

机构信息

McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

出版信息

Hum Brain Mapp. 2021 May;42(7):1952-1968. doi: 10.1002/hbm.25352. Epub 2021 Feb 5.

Abstract

Standard magnetic resonance imaging approaches offer high-resolution but indirect measures of neural activity, limiting understanding of the physiological processes associated with imaging findings. Here, we used calibrated functional magnetic resonance imaging during the resting state to recover low-frequency fluctuations of the cerebral metabolic rate of oxygen (CMRO ). We tested whether functional connections derived from these fluctuations exhibited organization properties similar to those established by previous standard functional and anatomical connectivity studies. Seventeen participants underwent 20 min of resting imaging during dual-echo, pseudocontinuous arterial spin labeling, and blood-oxygen-level dependent (BOLD) signal acquisition. Participants also underwent a 10 min normocapnic and hypercapnic procedure. Brain-wide, CMRO low-frequency fluctuations were subjected to graph-based and voxel-wise functional connectivity analyses. Results demonstrated that connections derived from resting CMRO fluctuations exhibited complex, small-world topological properties (i.e., high integration and segregation, cost efficiency) consistent with those observed in previous studies using functional and anatomical connectivity approaches. Voxel-wise CMRO connectivity also exhibited spatial patterns consistent with four targeted resting-state subnetworks: two association (i.e., frontoparietal and default mode) and two perceptual (i.e., auditory and occipital-visual). These are the first findings to support the use of calibration-derived CMRO low-frequency fluctuations for detecting brain-wide organizational properties typical of healthy participants. We discuss interpretations, advantages, and challenges in using calibration-derived oxygen metabolism signals for examining the intrinsic organization of the human brain.

摘要

标准的磁共振成像方法提供了高分辨率但间接的神经活动测量,限制了对与成像结果相关的生理过程的理解。在这里,我们在静息状态下使用校准的功能磁共振成像来恢复大脑耗氧量 (CMRO) 的低频波动。我们测试了这些波动得出的功能连接是否表现出与先前的标准功能和解剖连接研究建立的组织性质相似的组织性质。17 名参与者在双回波、伪连续动脉自旋标记和血氧水平依赖 (BOLD) 信号采集过程中进行了 20 分钟的静息成像。参与者还进行了 10 分钟的正常碳酸血症和高碳酸血症过程。对全脑 CMRO 低频波动进行了基于图和体素的功能连接分析。结果表明,源自静息 CMRO 波动的连接表现出复杂的小世界拓扑性质(即高整合性和隔离性、成本效率),与先前使用功能和解剖连接方法的研究中观察到的一致。体素 CMRO 连接也表现出与四个靶向静息状态子网一致的空间模式:两个关联(即额顶叶和默认模式)和两个感知(即听觉和枕叶-视觉)。这是支持使用校准衍生的 CMRO 低频波动来检测健康参与者典型的全脑组织性质的首批发现。我们讨论了使用校准衍生的氧气代谢信号来检查人类大脑内在组织的解释、优势和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc6/8046048/bf668e7b7e4d/HBM-42-1952-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验