Suppr超能文献

观其伴,知其物:对视觉场景中物体共现所衍生语义表征的一项研究。

You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes.

作者信息

Sadeghi Zahra, McClelland James L, Hoffman Paul

机构信息

School of Electrical and Computer Engineering, University of Tehran, Iran; Department of Psychology, Center for Mind, Brain and Computation, Stanford University, Stanford, CA, USA.

Department of Psychology, Center for Mind, Brain and Computation, Stanford University, Stanford, CA, USA.

出版信息

Neuropsychologia. 2015 Sep;76:52-61. doi: 10.1016/j.neuropsychologia.2014.08.031. Epub 2014 Sep 6.

Abstract

An influential position in lexical semantics holds that semantic representations for words can be derived through analysis of patterns of lexical co-occurrence in large language corpora. Firth (1957) famously summarised this principle as "you shall know a word by the company it keeps". We explored whether the same principle could be applied to non-verbal patterns of object co-occurrence in natural scenes. We performed latent semantic analysis (LSA) on a set of photographed scenes in which all of the objects present had been manually labelled. This resulted in a representation of objects in a high-dimensional space in which similarity between two objects indicated the degree to which they appeared in similar scenes. These representations revealed similarities among objects belonging to the same taxonomic category (e.g., items of clothing) as well as cross-category associations (e.g., between fruits and kitchen utensils). We also compared representations generated from this scene dataset with two established methods for elucidating semantic representations: (a) a published database of semantic features generated verbally by participants and (b) LSA applied to a linguistic corpus in the usual fashion. Statistical comparisons of the three methods indicated significant association between the structures revealed by each method, with the scene dataset displaying greater convergence with feature-based representations than did LSA applied to linguistic data. The results indicate that information about the conceptual significance of objects can be extracted from their patterns of co-occurrence in natural environments, opening the possibility for such data to be incorporated into existing models of conceptual representation.

摘要

词汇语义学中的一种有影响力的观点认为,单词的语义表征可以通过分析大型语言语料库中的词汇共现模式来推导。弗斯(1957)有句名言,将这一原则总结为“观其伴,知其词”。我们探究了这一原则是否同样适用于自然场景中物体共现的非语言模式。我们对一组拍摄的场景进行了潜在语义分析(LSA),其中所有出现的物体都已被手动标注。这在一个高维空间中生成了物体的表征,其中两个物体之间的相似度表明了它们在相似场景中出现的程度。这些表征揭示了属于同一分类类别的物体(如衣物)之间的相似性以及跨类别关联(如水果和厨房用具之间的关联)。我们还将从这个场景数据集生成的表征与两种既定的阐明语义表征的方法进行了比较:(a)参与者通过语言生成的已发表的语义特征数据库,以及(b)以通常方式应用于语言语料库的潜在语义分析。三种方法的统计比较表明,每种方法揭示的结构之间存在显著关联,与应用于语言数据的潜在语义分析相比,场景数据集与基于特征的表征显示出更大的趋同性。结果表明,关于物体概念意义的信息可以从它们在自然环境中的共现模式中提取出来,这为将此类数据纳入现有的概念表征模型开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b3/4589736/1479b8662ca8/gr5.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验