Suppr超能文献

血红素向血红素加氧酶-2的传递涉及甘油醛-3-磷酸脱氢酶。

Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase.

机构信息

Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, NC-22, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI 48109, USA.

出版信息

Biol Chem. 2022 Oct 28;403(11-12):1043-1053. doi: 10.1515/hsz-2022-0230. Print 2022 Nov 25.

Abstract

Heme regulatory motifs (HRMs) are found in a variety of proteins with diverse biological functions. In heme oxygenase-2 (HO2), heme binds to the HRMs and is readily transferred to the catalytic site in the core of the protein. To further define this heme transfer mechanism, we evaluated the ability of GAPDH, a known heme chaperone, to transfer heme to the HRMs and/or the catalytic core of HO2. Our results indicate GAPDH and HO2 form a complex We have followed heme insertion at both sites by fluorescence quenching in HEK293 cells with HO2 reporter constructs. Upon mutation of residues essential for heme binding at each site in our reporter construct, we found that HO2 binds heme at the core and the HRMs in live cells and that heme delivery to HO2 is dependent on the presence of GAPDH that is competent for heme binding. In sum, GAPDH is involved in heme delivery to HO2 but, surprisingly, not to a specific site on HO2. Our results thus emphasize the importance of heme binding to both the core and the HRMs and the interplay of HO2 with the heme pool via GAPDH to maintain cellular heme homeostasis.

摘要

血红素调节基序(HRMs)存在于具有多种生物学功能的各种蛋白质中。在血红素加氧酶-2(HO2)中,血红素与 HRMs 结合,并容易转移到蛋白质核心的催化部位。为了进一步定义这种血红素转移机制,我们评估了已知的血红素伴侣蛋白 GAPDH 将血红素转移到 HRMs 和/或 HO2 的催化核心的能力。我们的结果表明,GAPDH 和 HO2 形成复合物。我们已经通过用 HO2 报告基因构建体在 HEK293 细胞中进行荧光猝灭来跟踪两个部位的血红素插入。在我们的报告基因构建体中,突变每个部位结合血红素所必需的残基后,我们发现 HO2 在活细胞中在核心和 HRMs 处结合血红素,并且血红素向 HO2 的传递依赖于能够结合血红素的 GAPDH 的存在。总之,GAPDH 参与血红素向 HO2 的传递,但令人惊讶的是,不参与 HO2 上的特定部位。因此,我们的结果强调了血红素与核心和 HRMs 的结合以及 HO2 通过 GAPDH 与血红素池相互作用以维持细胞内血红素稳态的重要性。

相似文献

1
Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase.
Biol Chem. 2022 Oct 28;403(11-12):1043-1053. doi: 10.1515/hsz-2022-0230. Print 2022 Nov 25.
2
The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation.
J Biol Chem. 2020 Apr 17;295(16):5177-5191. doi: 10.1074/jbc.RA120.012803. Epub 2020 Mar 9.
4
Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site.
J Biol Chem. 2020 Dec 11;295(50):17227-17240. doi: 10.1074/jbc.RA120.014919. Epub 2020 Oct 13.
5
Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions.
J Biol Chem. 2019 May 17;294(20):8259-8272. doi: 10.1074/jbc.RA119.008592. Epub 2019 Apr 3.
6
The C-terminal heme regulatory motifs of heme oxygenase-2 are redox-regulated heme binding sites.
Biochemistry. 2015 May 5;54(17):2709-18. doi: 10.1021/acs.biochem.5b00266. Epub 2015 Apr 22.
7
Comparison of the Mechanisms of Heme Hydroxylation by Heme Oxygenases-1 and -2: Kinetic and Cryoreduction Studies.
Biochemistry. 2016 Jan 12;55(1):62-8. doi: 10.1021/acs.biochem.5b00943. Epub 2015 Dec 23.
8
Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells.
J Biol Chem. 2018 Sep 14;293(37):14557-14568. doi: 10.1074/jbc.RA118.004169. Epub 2018 Jul 16.
9
Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs.
Antioxid Redox Signal. 2018 Dec 20;29(18):1841-1857. doi: 10.1089/ars.2017.7368. Epub 2017 Nov 14.
10
Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.
Biochemistry. 2012 Oct 30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct 15.

引用本文的文献

4
Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder ().
Biology (Basel). 2023 May 28;12(6):784. doi: 10.3390/biology12060784.
5
Moonlighting enzymes: when cellular context defines specificity.
Cell Mol Life Sci. 2023 Apr 24;80(5):130. doi: 10.1007/s00018-023-04781-0.
6
New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals.
Biol Chem. 2022 Sep 26;403(11-12):1005-1015. doi: 10.1515/hsz-2022-0197. Print 2022 Nov 25.

本文引用的文献

1
Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels.
Free Radic Biol Med. 2022 Feb 20;180:179-190. doi: 10.1016/j.freeradbiomed.2022.01.008. Epub 2022 Jan 17.
2
Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells.
J Biol Chem. 2022 Feb;298(2):101549. doi: 10.1016/j.jbc.2021.101549. Epub 2021 Dec 29.
3
GAPDH is involved in the heme-maturation of myoglobin and hemoglobin.
FASEB J. 2022 Feb;36(2):e22099. doi: 10.1096/fj.202101237RR.
4
Regulation of protein function and degradation by heme, heme responsive motifs, and CO.
Crit Rev Biochem Mol Biol. 2022 Feb;57(1):16-47. doi: 10.1080/10409238.2021.1961674. Epub 2021 Sep 13.
5
Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site.
J Biol Chem. 2020 Dec 11;295(50):17227-17240. doi: 10.1074/jbc.RA120.014919. Epub 2020 Oct 13.
6
One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118881. doi: 10.1016/j.bbamcr.2020.118881. Epub 2020 Oct 3.
7
GAPDH delivers heme to soluble guanylyl cyclase.
J Biol Chem. 2020 Jun 12;295(24):8145-8154. doi: 10.1074/jbc.RA120.013802. Epub 2020 Apr 30.
8
The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation.
J Biol Chem. 2020 Apr 17;295(16):5177-5191. doi: 10.1074/jbc.RA120.012803. Epub 2020 Mar 9.
9
From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme.
Cells. 2020 Feb 29;9(3):579. doi: 10.3390/cells9030579.
10
Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions.
J Biol Chem. 2019 May 17;294(20):8259-8272. doi: 10.1074/jbc.RA119.008592. Epub 2019 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验