Division of Chemistry and Chemical Engineering and ‡Division of Engineering and Applied Science, California Institute of Technology , 1200 E. California Blvd., Pasadena, California 91125, United States.
Nano Lett. 2014 Oct 8;14(10):5858-64. doi: 10.1021/nl5027869. Epub 2014 Sep 11.
The emergence of size-dependent mechanical strength in nanosized materials is now well-established, but no fundamental understanding of fracture toughness or flaw sensitivity in nanostructures exists. We report the fabrication and in situ fracture testing of ∼70 nm diameter Ni-P metallic glass samples with a structural flaw. Failure occurs at the structural flaw in all cases, and the failure strength of flawed samples was reduced by 40% compared to unflawed samples. We explore deformation and failure mechanisms in a similar nanometallic glass via molecular dynamics simulations, which corroborate sensitivity to flaws and reveal that the structural flaw shifts the failure mechanism from shear banding to cavitation. We find that failure strength and deformation in amorphous nanosolids depend critically on the presence of flaws.
纳米材料的力学强度随尺寸变化而变化的现象已经得到充分证实,但目前对于纳米结构的断裂韧性和缺陷敏感性还没有基本的了解。我们报告了具有结构缺陷的约 70nm 直径的 Ni-P 金属玻璃样品的制造和原位断裂测试。在所有情况下,失效都发生在结构缺陷处,与无缺陷样品相比,有缺陷样品的失效强度降低了 40%。我们通过分子动力学模拟研究了类似纳米金属玻璃的变形和失效机制,该模拟证实了对缺陷的敏感性,并揭示了结构缺陷将失效机制从剪切带转变为空化。我们发现,非晶纳米固体的失效强度和变形与缺陷的存在密切相关。