1] School of Computer Science, Fudan University, Shanghai 200433, China [2] Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.
Sci Rep. 2014 Sep 9;4:6274. doi: 10.1038/srep06274.
Designing appropriate techniques to effectively control the trapping process in complex systems towards desirable efficiency is of paramount importance in the study of trapping problem. In this paper, we present three different methods guiding trapping process in a scale-free small-world network with a deep trap positioned at an initial node. All the proposed approaches dominate the trapping process by varying the transition probability of random walks. In the first two techniques, the transition probability is modified by an introduced weight parameter and a stochastic parameter, respectively. And the third scheme is a combination of the first two approaches, controlled by both parameters synchronously. For all the three control strategies, we derive both analytically and numerically the average trapping time (ATT) as the measure of the trapping efficiency, with the obtained explicit expressions being in good agreement with their corresponding exact numerical solutions. Our results indicate that the weight parameter changes simultaneously the dominating scaling of ATT and its prefactor. Different from the weight parameter, the stochastic parameter only modifies the prefactor, keeping the leading scaling unchanged. Finally, compared with the first two manners, the third strategy is a fine control, possessing the advantages of the first two ones. This work deepens the understanding of controlling trapping process in complex systems.
设计适当的技术来有效控制复杂系统中的俘获过程,以达到理想的效率,这在俘获问题的研究中至关重要。在本文中,我们提出了三种不同的方法,用于指导具有深阱位于初始节点的无标度小世界网络中的俘获过程。所有提出的方法都通过改变随机游走的转移概率来控制俘获过程。在前两种技术中,转移概率分别通过引入的权重参数和随机参数进行修改。第三种方案是前两种方法的结合,由两个参数同步控制。对于所有三种控制策略,我们分别从理论和数值上推导了平均俘获时间(ATT)作为俘获效率的度量,得到的显式表达式与它们相应的精确数值解非常吻合。我们的结果表明,权重参数同时改变了 ATT 的主导标度和其前因子。与权重参数不同,随机参数仅修改前因子,保持主导标度不变。最后,与前两种方法相比,第三种策略是一种精细控制,具有前两种方法的优点。这项工作加深了对复杂系统中俘获过程控制的理解。