Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2460-5. doi: 10.1073/pnas.1215508110. Epub 2013 Jan 28.
A quantitative description of a complex system is inherently limited by our ability to estimate the system's internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system's state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system's complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems.
对复杂系统的定量描述本质上受到我们从实验可获得的输出中估计系统内部状态的能力的限制。虽然同时测量所有内部变量,如细胞中的所有代谢物浓度,可以提供系统状态的完整描述,但实际上实验仅可访问系统的一部分变量或传感器。如果我们可以从输出中重建系统的完整内部状态,则称系统是可观测的。在这里,我们采用一种源自控制系统的动力学定律的图形方法来确定重建复杂系统完整内部状态所需的传感器。我们将这种方法应用于生化反应系统,发现所识别的传感器不仅是必要的,而且对于可观测性也是充分的。所开发的方法还可以识别目标或部分可观测性的最佳传感器,帮助我们从适当选择的输出中重建选定的状态变量,这是最佳生物标志物设计的前提。鉴于可观测性在复杂系统中起着基本作用,这些结果为系统地探索各种自然、技术和社会经济系统的动力学提供了途径。