Suppr超能文献

使用三链螺旋形成肽核酸对双链RNA进行序列选择性识别。

Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.

作者信息

Hnedzko Dziyana, Cheruiyot Samwel K, Rozners Eriks

机构信息

Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York.

出版信息

Curr Protoc Nucleic Acid Chem. 2014 Sep 8;58:4.60.1-23. doi: 10.1002/0471142700.nc0460s58.

Abstract

Non-coding RNAs play important roles in regulation of gene expression. Specific recognition and inhibition of these biologically important RNAs that form complex double-helical structures will be highly useful for fundamental studies in biology and practical applications in medicine. This protocol describes a strategy developed in our laboratory for sequence-selective recognition of double-stranded RNA (dsRNA) using triple-helix-forming peptide nucleic acids (PNAs) that bind in the major grove of the RNA helix. The strategy developed uses chemically modified nucleobases, such as 2-aminopyridine (M), which enables strong triple-helical binding under physiologically relevant conditions, and 2-pyrimidinone (P) and 3-oxo-2,3-dihydropyridazine (E), which enable recognition of isolated pyrimidines in the purine-rich strand of the RNA duplex. Detailed protocols for preparation of modified PNA monomers, solid-phase synthesis, HPLC purification of PNA oligomers, and measuring dsRNA binding affinity using isothermal titration calorimetry are included.

摘要

非编码RNA在基因表达调控中发挥着重要作用。特异性识别和抑制这些形成复杂双螺旋结构的具有生物学重要性的RNA,对于生物学基础研究和医学实际应用将非常有用。本方案描述了我们实验室开发的一种策略,该策略利用在RNA螺旋大沟中结合的三链螺旋形成肽核酸(PNA)对双链RNA(dsRNA)进行序列选择性识别。所开发的策略使用化学修饰的核碱基,例如2-氨基吡啶(M),其能够在生理相关条件下实现强三链螺旋结合;以及2-嘧啶酮(P)和3-氧代-2,3-二氢哒嗪(E),其能够识别RNA双链体富含嘌呤链中的孤立嘧啶。文中还包括了修饰PNA单体的制备、固相合成、PNA寡聚物的HPLC纯化以及使用等温滴定量热法测量dsRNA结合亲和力的详细方案。

相似文献

1
Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
Curr Protoc Nucleic Acid Chem. 2014 Sep 8;58:4.60.1-23. doi: 10.1002/0471142700.nc0460s58.
3
4
Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.
Biochemistry. 2012 Jan 10;51(1):63-73. doi: 10.1021/bi201570a. Epub 2011 Dec 20.
5
Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
Methods Enzymol. 2019;623:401-416. doi: 10.1016/bs.mie.2019.04.003. Epub 2019 Apr 27.
6
Synthesis and RNA-Binding Properties of Extended Nucleobases for Triplex-Forming Peptide Nucleic Acids.
J Org Chem. 2019 Nov 1;84(21):13276-13298. doi: 10.1021/acs.joc.9b01133. Epub 2019 Oct 2.
7
Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions.
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12593-6. doi: 10.1002/anie.201207925. Epub 2012 Nov 4.
9
Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
Nucleic Acids Res. 2014 Apr;42(6):4008-18. doi: 10.1093/nar/gkt1367. Epub 2014 Jan 13.
10
Improvement of sequence selectivity in triple helical recognition of RNA by phenylalanine-derived PNA.
Artif DNA PNA XNA. 2013 Jul-Dec;4(3):69-76. doi: 10.4161/adna.26599. Epub 2013 Oct 8.

引用本文的文献

1
TFOFinder: Python program for identifying purine-only double-stranded stretches in the predicted secondary structure(s) of RNA targets.
PLoS Comput Biol. 2023 Aug 25;19(8):e1011418. doi: 10.1371/journal.pcbi.1011418. eCollection 2023 Aug.
2
Forced Intercalation Peptide Nucleic Acid Probes for the Detection of an Adenosine-to-Inosine Modification.
ACS Omega. 2022 Dec 22;8(1):238-248. doi: 10.1021/acsomega.2c03568. eCollection 2023 Jan 10.
3
Antibacterial Peptide Nucleic Acids-Facts and Perspectives.
Molecules. 2020 Jan 28;25(3):559. doi: 10.3390/molecules25030559.
4
Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
Methods Enzymol. 2019;623:401-416. doi: 10.1016/bs.mie.2019.04.003. Epub 2019 Apr 27.
8
Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye.
Bioorg Med Chem. 2016 Sep 15;24(18):4199-4205. doi: 10.1016/j.bmc.2016.07.010. Epub 2016 Jul 6.

本文引用的文献

1
2
Triple-helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions.
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12593-6. doi: 10.1002/anie.201207925. Epub 2012 Nov 4.
3
Recent advances in chemical modification of Peptide nucleic acids.
J Nucleic Acids. 2012;2012:518162. doi: 10.1155/2012/518162. Epub 2012 Sep 6.
4
Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.
Biochemistry. 2012 Jan 10;51(1):63-73. doi: 10.1021/bi201570a. Epub 2011 Dec 20.
5
Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA.
Chem Commun (Camb). 2011 Oct 21;47(39):11125-7. doi: 10.1039/c1cc14706d. Epub 2011 Sep 12.
6
Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges.
Curr Top Med Chem. 2011;11(12):1535-54. doi: 10.2174/156802611795860979.
7
Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy.
Org Biomol Chem. 2011 Jan 21;9(2):326-36. doi: 10.1039/c0ob00418a. Epub 2010 Nov 3.
8
Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5.
J Am Chem Soc. 2010 Jun 30;132(25):8676-81. doi: 10.1021/ja101384k.
9
MicroRNAs: target recognition and regulatory functions.
Cell. 2009 Jan 23;136(2):215-33. doi: 10.1016/j.cell.2009.01.002.
10
The triple helix: 50 years later, the outcome.
Nucleic Acids Res. 2008 Sep;36(16):5123-38. doi: 10.1093/nar/gkn493. Epub 2008 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验