Suppr超能文献

胍基修饰的肽核酸识别双链 RNA。

Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.

机构信息

Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States.

出版信息

Biochemistry. 2012 Jan 10;51(1):63-73. doi: 10.1021/bi201570a. Epub 2011 Dec 20.

Abstract

Double-helical RNA has become an attractive target for molecular recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the molecular recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from d-arginine recognized the transactivation response element of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNA and the purine-rich strand of the bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex noncoding RNAs.

摘要

双链 RNA已成为分子识别的一个有吸引力的靶标,因为许多非编码 RNA 在基因表达的控制中发挥着重要作用。最近,我们发现短肽核酸(PNA)通过形成三螺旋体,与双链 RNA 的同源嘌呤链强烈且序列选择性地结合。在此,我们测试了 PNA 的α-胍基修饰是否可以增强分子识别。我们的研究受到 Ly 及其同事的发现的启发,即胍基修饰极大地增强了 PNA 的细胞递送。等温滴定量热法显示,胍基修饰的 PNA(GPNA)对 RNA 三螺旋识别的亲和力和序列选择性降低。数据表明,与未修饰的 PNA 形成 1:1 PNA-RNA 三螺旋体相反,GPNA 更喜欢 2:1 GPNA-RNA 三聚体入侵复合物。然而,对于识别具有生物学相关性的双链 RNA,仍获得了有希望的结果。与增强的链入侵能力一致,来源于 d-精氨酸的 GPNA 以高亲和力和序列选择性识别 HIV-1 的转录激活反应元件,可能通过 Watson-Crick 双链形成。另一方面,未修饰和核苷酸修饰的 PNA 以及细菌 A 位的嘌呤丰富链形成了强且序列选择性的三螺旋体。这些结果表明,PNA 的适当化学修饰可能会增强对复杂非编码 RNA 的分子识别。

相似文献

1
Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.
Biochemistry. 2012 Jan 10;51(1):63-73. doi: 10.1021/bi201570a. Epub 2011 Dec 20.
2
Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5.
J Am Chem Soc. 2010 Jun 30;132(25):8676-81. doi: 10.1021/ja101384k.
4
Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
Curr Protoc Nucleic Acid Chem. 2014 Sep 8;58:4.60.1-23. doi: 10.1002/0471142700.nc0460s58.
5
6
Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
Nucleic Acids Res. 2014 Apr;42(6):4008-18. doi: 10.1093/nar/gkt1367. Epub 2014 Jan 13.
7
A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure.
Bioconjug Chem. 2019 Mar 20;30(3):931-943. doi: 10.1021/acs.bioconjchem.9b00039. Epub 2019 Feb 15.
9

引用本文的文献

3
Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications.
Beilstein J Org Chem. 2021 Jul 19;17:1641-1688. doi: 10.3762/bjoc.17.116. eCollection 2021.
4
Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases.
J Comput Aided Mol Des. 2021 Mar;35(3):355-369. doi: 10.1007/s10822-021-00375-9. Epub 2021 Feb 24.
5
Triplex-Forming Peptide Nucleic Acids with Extended Backbones.
Chembiochem. 2020 Dec 1;21(23):3410-3416. doi: 10.1002/cbic.202000432. Epub 2020 Aug 31.
6
Thermal Stability of Peptide Nucleic Acid Complexes.
J Phys Chem B. 2019 Oct 3;123(39):8168-8177. doi: 10.1021/acs.jpcb.9b05168. Epub 2019 Sep 20.
7
Interactions of 2'-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site.
PLoS One. 2018 Jan 19;13(1):e0191138. doi: 10.1371/journal.pone.0191138. eCollection 2018.
9
Peptide nucleic acids: Advanced tools for biomedical applications.
J Biotechnol. 2017 Oct 10;259:148-159. doi: 10.1016/j.jbiotec.2017.07.026. Epub 2017 Jul 29.

本文引用的文献

1
Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA.
Chem Commun (Camb). 2011 Oct 21;47(39):11125-7. doi: 10.1039/c1cc14706d. Epub 2011 Sep 12.
2
PNA containing isocytidine nucleobase: synthesis and recognition of double helical RNA.
Bioorg Med Chem Lett. 2011 Apr 1;21(7):2121-4. doi: 10.1016/j.bmcl.2011.01.130. Epub 2011 Feb 1.
3
Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5.
J Am Chem Soc. 2010 Jun 30;132(25):8676-81. doi: 10.1021/ja101384k.
5
SSB-assisted duplex invasion of preorganized PNA into double-stranded DNA.
Chembiochem. 2009 Nov 2;10(16):2607-12. doi: 10.1002/cbic.200900381.
6
Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs.
J Am Chem Soc. 2009 Sep 2;131(34):12088-90. doi: 10.1021/ja900228j.
7
High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers.
Nucleic Acids Res. 2009 Jul;37(13):4498-507. doi: 10.1093/nar/gkp437. Epub 2009 May 27.
9
Binding of HIV-1 TAR mRNA to a peptide nucleic acid oligomer and its conjugates with metal-ion-binding multidentate ligands.
J Biol Inorg Chem. 2009 Feb;14(2):287-300. doi: 10.1007/s00775-008-0448-6. Epub 2008 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验