Suppr超能文献

用于盲生物信号分类模型的时间序列。

Time series for blind biosignal classification model.

机构信息

Department of Computer and Information Science, University of Macau, Av. Padre Tomás Pereira Taipa, Macau S.A.R., China.

Department of Computer and Information Science, University of Macau, Av. Padre Tomás Pereira Taipa, Macau S.A.R., China.

出版信息

Comput Biol Med. 2014 Nov;54:32-6. doi: 10.1016/j.compbiomed.2014.08.007. Epub 2014 Aug 19.

Abstract

Biosignals such as electrocardiograms (ECG), electroencephalograms (EEG), and electromyograms (EMG), are important noninvasive measurements useful for making diagnostic decisions. Recently, considerable research has been conducted in order to potentially automate signal classification for assisting in disease diagnosis. However, the biosignal type (ECG, EEG, EMG or other) needs to be known prior to the classification process. If the given biosignal is of an unknown type, none of the existing methodologies can be utilized. In this paper, a blind biosignal classification model (B(2)SC Model) is proposed in order to identify the source biosignal type automatically, and thus ultimately benefit the diagnostic decision. The approach employs time series algorithms for constructing the model. It uses a dynamic time warping (DTW) algorithm with clustering to discover the similarity between two biosignals, and consequently classifies disease without prior knowledge of the source signal type. The empirical experiments presented in this paper demonstrate the effectiveness of the method as well as the scalability of the approach.

摘要

生物信号,如心电图(ECG)、脑电图(EEG)和肌电图(EMG),是用于做出诊断决策的重要非侵入性测量方法。最近,已经进行了大量的研究,以便能够对信号进行分类,以协助疾病诊断。然而,在分类过程之前,需要知道生物信号的类型(ECG、EEG、EMG 或其他)。如果给定的生物信号类型未知,则无法使用现有的任何方法。在本文中,提出了一种盲生物信号分类模型(B(2)SC 模型),以便能够自动识别源生物信号的类型,从而最终有助于诊断决策。该方法采用时间序列算法来构建模型。它使用动态时间规整(DTW)算法和聚类来发现两个生物信号之间的相似性,并在没有源信号类型先验知识的情况下对疾病进行分类。本文提出的实证实验证明了该方法的有效性和方法的可扩展性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验