Wang Jingmao, Wang Qing, Yang Yang, Liu Xiaohua, Gu Jiahui, Li Wenqi, Ma Suliya, Lu Yingmin
College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China,
Mol Biol Rep. 2014 Dec;41(12):8231-45. doi: 10.1007/s11033-014-3725-1. Epub 2014 Sep 9.
Plants have continually confrontation with different abiotic stresses, including salt, low temperature, drought or hormone stress. The plants acclimate to the environmental stresses relating with the falls of the molecular mesh including the stress signal receiver, signal transcriptional regulation and the expression of functional and structure genes. Using the RNA-seq, we carried out a transcriptional analysis under cold treatment for investigating a profound comprehension of the signal network and molecular metabolisms reaction included in abiotic stress reaction for Lilium lancifolium. Our study identified 18,722 unigenes had demonstrated the resemblance to the known exact proteins in the Swiss-Prot protein database and classified them by Gene ontology into three primary kinds: cellular component, biological process, and molecular function, and then 15,898 unigenes aligned to existing sequences in the KEGG databases. Based on the transcriptome results of cold stress, more stress-related genes were identified and analyzed of their expressions in other abiotic stress treatments as 37 °C, ABA, JA and Na. Meanwhile, bioinformatics qRT-PCR analyses of stress genes as LlDREB1, LlAP2, LlNAC1, LlHOT, LlR2R3-MYB and LlCDPK revealed that novel candidate genes encoding ethylene responsive transporters and serine/threonine receptor-like kinases, which contributed to speculate the signal regulation pathway during the abiotic stresses; engineering genes could also boost the tolerance to stress, as protected and maintained the function and structure of cellular components. Our research conjectured the abiotic stress signal transduction pathway and identified the expected key ingredients regulating the stress tolerance in Lilium lancifolium, which would enable the in-depth molecular exploration of stress-tolerance mechanisms in lily.
植物不断面临着各种非生物胁迫,包括盐胁迫、低温胁迫、干旱胁迫或激素胁迫。植物通过分子网络的变化来适应环境胁迫,这些变化包括胁迫信号受体、信号转录调控以及功能基因和结构基因的表达。利用RNA测序技术,我们对低温处理下的百合进行了转录组分析,以深入了解非生物胁迫反应中包含的信号网络和分子代谢反应。我们的研究鉴定出18722个单基因与瑞士蛋白质数据库中已知的精确蛋白质具有相似性,并根据基因本体论将它们分为三大类:细胞成分、生物过程和分子功能,然后有15898个单基因与KEGG数据库中的现有序列进行了比对。基于冷胁迫的转录组结果,我们鉴定出了更多与胁迫相关的基因,并分析了它们在其他非生物胁迫处理(如37℃、脱落酸、茉莉酸和氯化钠)下的表达情况。同时,对胁迫相关基因LlDREB1、LlAP2、LlNAC1、LlHOT、LlR2R3-MYB和LlCDPK进行生物信息学定量逆转录聚合酶链反应分析发现,编码乙烯响应转运蛋白和丝氨酸/苏氨酸受体样激酶的新候选基因有助于推测非生物胁迫期间的信号调控途径;工程基因也可以提高对胁迫的耐受性,因为它们可以保护和维持细胞成分的功能和结构。我们的研究推测了非生物胁迫信号转导途径,并鉴定出了调控卷丹胁迫耐受性的预期关键成分,这将有助于对百合胁迫耐受机制进行深入的分子探索。