Suppr超能文献

用于识别从轻度认知障碍进展为阿尔茨海默病患者的疾病状态指数预测模型的可推广性。

Generalizability of the disease state index prediction model for identifying patients progressing from mild cognitive impairment to Alzheimer's disease.

作者信息

Hall Anette, Muñoz-Ruiz Miguel, Mattila Jussi, Koikkalainen Juha, Tsolaki Magda, Mecocci Patrizia, Kloszewska Iwona, Vellas Bruno, Lovestone Simon, Visser Pieter Jelle, Lötjonen Jyrki, Soininen Hilkka

机构信息

Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.

Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland Department of Neurology, Kuopio University Hospital, Kuopio, Finland.

出版信息

J Alzheimers Dis. 2015;44(1):79-92. doi: 10.3233/JAD-140942.

Abstract

BACKGROUND

The Disease State Index (DSI) prediction model measures the similarity of patient data to diagnosed stable and progressive mild cognitive impairment (MCI) cases to identify patients who are progressing to Alzheimer's disease.

OBJECTIVES

We evaluated how well the DSI generalizes across four different cohorts: DESCRIPA, ADNI, AddNeuroMed, and the Kuopio MCI study.

METHODS

The accuracy of the DSI in predicting progression was examined for each cohort separately using 10 × 10-fold cross-validation and for inter-cohort validation using each cohort as a test set for the model built from the other independent cohorts using bootstrapping with 10 repetitions. Altogether 875 subjects were included in the analysis. The analyzed data included a comprehensive set of age and gender corrected magnetic resonance imaging (MRI) features from hippocampal volumetry, multi-template tensor-based morphometry, and voxel-based morphometry as well as Mini-Mental State Examination (MMSE), APOE genotype, and additional cohort specific data from neuropsychological tests and cerebrospinal fluid measurements (CSF).

RESULTS

The DSI model was used to classify the patients into stable and progressive MCI cases. AddNeuroMed had the highest classification results of the cohorts, while ADNI and Kuopio MCI exhibited the lowest values. The MRI features alone achieved a good classification performance for all cohorts. For ADNI and DESCRIPA, adding MMSE, APOE genotype, CSF, and neuropsychological data improved the results.

CONCLUSIONS

The results reveal that the prediction performance of the combined cohort is close to the average of the individual cohorts. It is feasible to use different cohorts as training sets for the DSI, if they are sufficiently similar.

摘要

背景

疾病状态指数(DSI)预测模型通过测量患者数据与已确诊的稳定型和进展型轻度认知障碍(MCI)病例的相似性,来识别正在发展为阿尔茨海默病的患者。

目的

我们评估了DSI在四个不同队列(DESCRIPA、ADNI、AddNeuroMed和库奥皮奥MCI研究)中的泛化能力。

方法

分别使用10×10倍交叉验证对每个队列中DSI预测进展的准确性进行检验,并使用自抽样重复10次的方法,将每个队列作为由其他独立队列构建的模型的测试集,进行队列间验证。分析共纳入875名受试者。分析的数据包括来自海马体积测量、基于多模板张量的形态测量和基于体素的形态测量的一套完整的经年龄和性别校正的磁共振成像(MRI)特征,以及简易精神状态检查表(MMSE)、载脂蛋白E(APOE)基因型,和来自神经心理学测试及脑脊液测量(CSF)的其他特定队列数据。

结果

DSI模型用于将患者分类为稳定型和进展型MCI病例。AddNeuroMed队列的分类结果最高,而ADNI和库奥皮奥MCI队列的分类结果最低。仅MRI特征在所有队列中都取得了良好的分类性能。对于ADNI和DESCRIPA队列,添加MMSE、APOE基因型、CSF和神经心理学数据可改善结果。

结论

结果表明,合并队列的预测性能接近各个队列的平均水平。如果不同队列足够相似,将其用作DSI的训练集是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验