Suppr超能文献

基因组热休克元件序列驱动协同的人热休克因子 1 DNA 结合和选择性。

Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity.

机构信息

Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710.

Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143.

出版信息

J Biol Chem. 2014 Oct 31;289(44):30459-30469. doi: 10.1074/jbc.M114.591578. Epub 2014 Sep 9.

Abstract

The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer.

摘要

热休克转录因子 1(HSF1)激活了多种参与细胞存活的基因的表达,包括蛋白质伴侣、蛋白质降解机制、抗凋亡蛋白和转录因子。虽然 HSF1 的激活与神经退行性疾病的改善有关,但癌细胞的存活依赖于 HSF1。事实上,HSF1 在癌细胞中驱动了一个不同于响应蛋白毒性应激激活的基因表达程序,并且与停滞细胞相比,循环细胞中的 HSF1 DNA 结合活性升高。活性 HSF1 同三聚体化并与由五聚体序列 nGAAn 的反向重复组成的 DNA 序列结合,称为热休克元件(HSE)。最近的全面 ChIP-seq 实验表明,HSE 在人类基因组中的结构非常多样化,在 HSE 重复的间隔、取向和程度上偏离了共识序列,这可能影响 HSF1 DNA 结合效力以及靶基因表达的动力学和幅度。为了了解决定结合特异性的机制,HSF1 被纯化为单体或三聚体,并用于体外使用荧光偏振和热变性分析评估 DNA 结合位点偏好。将这些结果与体内定量染色质免疫沉淀测定进行了比较。我们证明了扩展 HSE 序列的特定取向在驱动体内靶基因位点的 HSF1 DNA 优先结合中的作用。这些研究为理解神经退行性疾病和癌症中 HSF1 靶基因识别和转录的差异提供了生化基础。

相似文献

1
Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity.
J Biol Chem. 2014 Oct 31;289(44):30459-30469. doi: 10.1074/jbc.M114.591578. Epub 2014 Sep 9.
4
Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
Mol Cell Biol. 1994 Nov;14(11):7592-603. doi: 10.1128/mcb.14.11.7592-7603.1994.
5
Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
Mol Biol Cell. 2018 Dec 15;29(26):3168-3182. doi: 10.1091/mbc.E18-06-0353. Epub 2018 Oct 17.
6
Modulation of human heat shock factor trimerization by the linker domain.
J Biol Chem. 1999 Jun 11;274(24):17219-25. doi: 10.1074/jbc.274.24.17219.
9
Differential recognition of heat shock elements by members of the heat shock transcription factor family.
FEBS J. 2009 Apr;276(7):1962-74. doi: 10.1111/j.1742-4658.2009.06923.x. Epub 2009 Feb 23.
10
AIRAP, a new human heat shock gene regulated by heat shock factor 1.
J Biol Chem. 2010 Apr 30;285(18):13607-15. doi: 10.1074/jbc.M109.082693. Epub 2010 Feb 25.

引用本文的文献

2
Human milk-derived extracellular vesicles promote the heat shock response in polarized microglia.
Cell Stress Chaperones. 2025 Jul;30(4):100088. doi: 10.1016/j.cstres.2025.100088. Epub 2025 Jun 26.
3
A guide to heat shock factors as multifunctional transcriptional regulators.
FEBS J. 2025 Aug;292(16):4133-4155. doi: 10.1111/febs.70139. Epub 2025 Jun 2.
4
Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens.
Antioxidants (Basel). 2025 Apr 15;14(4):471. doi: 10.3390/antiox14040471.
5
Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication.
Cell Mol Life Sci. 2024 Sep 7;81(1):386. doi: 10.1007/s00018-024-05370-5.
8
Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes.
Nucleic Acids Res. 2023 Jun 9;51(10):5040-5055. doi: 10.1093/nar/gkad304.
10
Heat-Induced Conformational Transition Mechanism of Heat Shock Factor 1 Investigated by Tryptophan Probe.
Biochemistry. 2022 Dec 20;61(24):2897-2908. doi: 10.1021/acs.biochem.2c00492. Epub 2022 Dec 9.

本文引用的文献

1
Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf.
PLoS Genet. 2013;9(9):e1003701. doi: 10.1371/journal.pgen.1003701. Epub 2013 Sep 12.
2
Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3388-97. doi: 10.1073/pnas.1305275110. Epub 2013 Aug 19.
3
Identification of a tissue-selective heat shock response regulatory network.
PLoS Genet. 2013 Apr;9(4):e1003466. doi: 10.1371/journal.pgen.1003466. Epub 2013 Apr 18.
6
7
Accurate prediction of inducible transcription factor binding intensities in vivo.
PLoS Genet. 2012;8(3):e1002610. doi: 10.1371/journal.pgen.1002610. Epub 2012 Mar 29.
8
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases.
Nat Rev Drug Discov. 2011 Dec 1;10(12):930-44. doi: 10.1038/nrd3453.
10
Heat shock factors: integrators of cell stress, development and lifespan.
Nat Rev Mol Cell Biol. 2010 Aug;11(8):545-55. doi: 10.1038/nrm2938. Epub 2010 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验