Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710.
Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143.
J Biol Chem. 2014 Oct 31;289(44):30459-30469. doi: 10.1074/jbc.M114.591578. Epub 2014 Sep 9.
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer.
热休克转录因子 1(HSF1)激活了多种参与细胞存活的基因的表达,包括蛋白质伴侣、蛋白质降解机制、抗凋亡蛋白和转录因子。虽然 HSF1 的激活与神经退行性疾病的改善有关,但癌细胞的存活依赖于 HSF1。事实上,HSF1 在癌细胞中驱动了一个不同于响应蛋白毒性应激激活的基因表达程序,并且与停滞细胞相比,循环细胞中的 HSF1 DNA 结合活性升高。活性 HSF1 同三聚体化并与由五聚体序列 nGAAn 的反向重复组成的 DNA 序列结合,称为热休克元件(HSE)。最近的全面 ChIP-seq 实验表明,HSE 在人类基因组中的结构非常多样化,在 HSE 重复的间隔、取向和程度上偏离了共识序列,这可能影响 HSF1 DNA 结合效力以及靶基因表达的动力学和幅度。为了了解决定结合特异性的机制,HSF1 被纯化为单体或三聚体,并用于体外使用荧光偏振和热变性分析评估 DNA 结合位点偏好。将这些结果与体内定量染色质免疫沉淀测定进行了比较。我们证明了扩展 HSE 序列的特定取向在驱动体内靶基因位点的 HSF1 DNA 优先结合中的作用。这些研究为理解神经退行性疾病和癌症中 HSF1 靶基因识别和转录的差异提供了生化基础。