Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim, Germany.
Department of Chemistry, University of California , Davis, California 95616, United States.
J Am Chem Soc. 2017 Mar 29;139(12):4306-4309. doi: 10.1021/jacs.7b00686. Epub 2017 Mar 20.
[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S] cluster linked through a bridging cysteine to a [2Fe] subsite coordinated by CN and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fe). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.
[FeFe]-氢化酶以极高的效率催化质子可逆还原为氢气。活性位点("H 簇")由一个 [4Fe-4S] 簇通过桥连半胱氨酸与一个由 CN 和 CO 配体配位的 [2Fe] 亚位点连接组成,其特征是一个二硫代胺基部分,作为蛋白质质子通道和催化远端铁位点(Fe)之间的质子穿梭。尽管人们普遍认为在催化机制中必须存在铁结合的末端氢化物物种,但这种物种从未在实验中直接观察到。在这里,我们结合密度泛函理论(DFT)计算,展示了一种缺乏胺质子穿梭体的 [FeFe]-氢化酶变体的傅里叶变换红外(FTIR)和核共振振动光谱(NRVS)实验,该变体稳定了一个假定的氢化物状态。NRVS 光谱明确地显示了末端 Fe-H 物种的弯曲模式,完全符合催化循环的广泛接受模型。