Suppr超能文献

FtsA的ATP结合口袋中的热敏缺陷可通过二聚体界面的变构变化得到抑制。

A thermosensitive defect in the ATP binding pocket of FtsA can be suppressed by allosteric changes in the dimer interface.

作者信息

Herricks Jennifer R, Nguyen Diep, Margolin William

机构信息

Department of Microbiology & Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.

出版信息

Mol Microbiol. 2014 Nov;94(3):713-27. doi: 10.1111/mmi.12790. Epub 2014 Oct 7.

Abstract

In Escherichia coli, initial assembly of the Z ring for cell division requires FtsZ plus the essential Z ring-associated proteins FtsA and ZipA. Thermosensitive mutations in ftsA, such as ftsA27, map in or near its ATP binding pocket and result in cell division arrest at non-permissive temperatures. We found that purified wild-type FtsA bound and hydrolysed ATP, whereas FtsA27 was defective in both activities. FtsA27 was also less able to localize to the Z ring in vivo. To investigate the role of ATP transactions in FtsA function in vivo, we isolated intragenic suppressors of ftsA27. Suppressor lesions in the ATP site restored the ability of FtsA27 to compete with ZipA at the Z ring, and enhanced ATP binding and hydrolysis in vitro. Notably, suppressors outside of the ATP binding site, including some mapping to the FtsA-FtsA subunit interface, also enhanced ATP transactions and exhibited gain of function phenotypes in vivo. These results suggest that allosteric effects, including changes in oligomeric state, may influence the ability of FtsA to bind and/or hydrolyse ATP.

摘要

在大肠杆菌中,用于细胞分裂的Z环的初始组装需要FtsZ以及必需的与Z环相关的蛋白质FtsA和ZipA。ftsA中的温度敏感突变,如ftsA27,位于其ATP结合口袋内或附近,会导致在非允许温度下细胞分裂停滞。我们发现纯化的野生型FtsA能结合并水解ATP,而FtsA27在这两种活性方面均存在缺陷。FtsA27在体内也较难定位于Z环。为了研究ATP转换在FtsA体内功能中的作用,我们分离了ftsA27的基因内抑制子。ATP位点的抑制性损伤恢复了FtsA27在Z环处与ZipA竞争的能力,并增强了其体外ATP结合和水解能力。值得注意的是,ATP结合位点之外的抑制子,包括一些定位于FtsA-FtsA亚基界面的抑制子,也增强了ATP转换,并在体内表现出功能获得型表型。这些结果表明,包括寡聚状态变化在内的变构效应可能会影响FtsA结合和/或水解ATP的能力。

相似文献

2
Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling.
Mol Microbiol. 2018 Sep;109(5):676-693. doi: 10.1111/mmi.14069. Epub 2018 Aug 1.
3
Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA.
J Bacteriol. 2019 Jan 28;201(4). doi: 10.1128/JB.00579-18. Print 2019 Feb 15.
4
Assembly and architecture of Escherichia coli divisome proteins FtsA and FtsZ.
J Biol Chem. 2022 Mar;298(3):101663. doi: 10.1016/j.jbc.2022.101663. Epub 2022 Jan 29.
5
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
J Biol Chem. 2013 Feb 1;288(5):3219-26. doi: 10.1074/jbc.M112.434944. Epub 2012 Dec 11.
6
A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4197-202. doi: 10.1073/pnas.0635003100. Epub 2003 Mar 12.
7
The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring.
Microbiology (Reading). 2007 Mar;153(Pt 3):814-825. doi: 10.1099/mic.0.2006/001834-0.

引用本文的文献

2
Role of the antiparallel double-stranded filament form of FtsA in activating the divisome.
mBio. 2024 Aug 14;15(8):e0168724. doi: 10.1128/mbio.01687-24. Epub 2024 Jul 23.
3
Role of the antiparallel double-stranded filament form of FtsA in activating the divisome.
bioRxiv. 2024 Jun 30:2024.06.24.600433. doi: 10.1101/2024.06.24.600433.
4
Building the Bacterial Divisome at the Septum.
Subcell Biochem. 2024;104:49-71. doi: 10.1007/978-3-031-58843-3_4.
5
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
6
Anchors: A way for FtsZ filaments to stay membrane bound.
Mol Microbiol. 2023 Oct;120(4):525-538. doi: 10.1111/mmi.15067. Epub 2023 Apr 28.
7
Nucleotide-dependent activities of FtsA regulate the early establishment of a functional divisome during the cell cycle.
Front Microbiol. 2023 May 12;14:1171376. doi: 10.3389/fmicb.2023.1171376. eCollection 2023.
8
Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery.
EcoSal Plus. 2021 Dec 15;9(2):eESP00222021. doi: 10.1128/ecosalplus.ESP-0022-2021. Epub 2021 Dec 13.
9
FtsA acts through FtsW to promote cell wall synthesis during cell division in .
Proc Natl Acad Sci U S A. 2021 Aug 31;118(35). doi: 10.1073/pnas.2107210118.

本文引用的文献

1
A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN.
Mol Microbiol. 2014 Jun;92(6):1212-26. doi: 10.1111/mmi.12623. Epub 2014 May 8.
2
The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.
Nat Cell Biol. 2014 Jan;16(1):38-46. doi: 10.1038/ncb2885. Epub 2013 Dec 8.
3
Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination.
J Biol Chem. 2013 Sep 13;288(37):26625-34. doi: 10.1074/jbc.M113.491688. Epub 2013 Aug 6.
4
Dimer dynamics and filament organization of the bacterial cell division protein FtsA.
J Mol Biol. 2013 Nov 15;425(22):4415-26. doi: 10.1016/j.jmb.2013.07.016. Epub 2013 Jul 17.
5
Liposome division by a simple bacterial division machinery.
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11000-4. doi: 10.1073/pnas.1222254110. Epub 2013 Jun 17.
6
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
J Biol Chem. 2013 Feb 1;288(5):3219-26. doi: 10.1074/jbc.M112.434944. Epub 2012 Dec 11.
7
Reconstitution of the Escherichia coli cell division ZipA-FtsZ complexes in nanodiscs as revealed by electron microscopy.
J Struct Biol. 2012 Dec;180(3):531-8. doi: 10.1016/j.jsb.2012.08.013. Epub 2012 Sep 19.
8
ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division.
J Bacteriol. 2012 Oct;194(19):5334-42. doi: 10.1128/JB.00859-12. Epub 2012 Jul 27.
9
10
FtsA forms actin-like protofilaments.
EMBO J. 2012 May 16;31(10):2249-60. doi: 10.1038/emboj.2012.76. Epub 2012 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验