Arjes Heidi A, Lai Bradley, Emelue Ezinwanne, Steinbach Adriana, Levin Petra Anne
Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Present address: Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
BMC Microbiol. 2015 Oct 13;15:209. doi: 10.1186/s12866-015-0544-z.
Assembly of the tubulin-like GTPase, FtsZ, at the future division site initiates the process of bacterial cytokinesis. The FtsZ ring serves as a platform for assembly of the division machinery and constricts at the leading edge of the invaginating septum during cytokinesis. In vitro, FtsZ assembles in a GTP-dependent manner, forming straight filaments that curve upon GTP hydrolysis. FtsZ binds but cannot hydrolyze GTP as a monomer. Instead, the active site for GTP hydrolysis is formed at the monomer-monomer interface upon dimerization. While the dynamics of GTP hydrolysis and assembly have been extensively studied in vitro, significantly less is known about the role of GTP binding and hydrolysis in vivo. ftsZ84, a GTPase defective allele of Escherichia coli ftsZ, provides a striking example of the disconnect between in vivo and in vitro FtsZ assembly.
Although ftsZ84 mutants are defective for FtsZ ring formation and division under nonpermissive conditions, they are near wild type for ring formation and division under permissive conditions. In vitro, however, purified FtsZ84 is defective in GTP binding, hydrolysis and assembly under standard reaction conditions. To clarify the nature of the FtsZ84 assembly defect, we isolated and characterized three intragenic suppressors of ftsZ84. All three suppressor mutations increased the apparent affinity of FtsZ84 for GTP, consistent with improved subunit-subunit interactions along the longitudinal interface. Although kinetic analysis indicates that the suppressor mutations increase the affinity of FtsZ84 for GTP, all three exhibit reduced rates of GTP hydrolysis and fail to support assembly in vitro.
Together, our data suggest that FtsZ, and potentially other enzymes whose assembly is similarly regulated, can compensate for defects in catalysis through increases in substrate binding and subunit-subunit interactions. In addition, these results highlight the dichotomy between commonly used in vitro assembly conditions and FtsZ ring formation in the complex intracellular milieu.
微管蛋白样GTP酶FtsZ在未来的分裂位点组装,启动细菌胞质分裂过程。FtsZ环作为分裂机器组装的平台,在胞质分裂期间在向内凹陷隔膜的前沿收缩。在体外,FtsZ以GTP依赖的方式组装,形成直丝,在GTP水解时弯曲。FtsZ作为单体时能结合但不能水解GTP。相反,GTP水解的活性位点在二聚化时在单体-单体界面形成。虽然GTP水解和组装的动力学在体外已得到广泛研究,但关于GTP结合和水解在体内的作用知之甚少。ftsZ84是大肠杆菌ftsZ的一个GTP酶缺陷等位基因,它为体内和体外FtsZ组装之间的脱节提供了一个显著例子。
虽然ftsZ84突变体在非允许条件下FtsZ环形成和分裂存在缺陷,但在允许条件下它们的环形成和分裂接近野生型。然而,在体外,纯化的FtsZ84在标准反应条件下GTP结合、水解和组装存在缺陷。为了阐明FtsZ84组装缺陷的本质,我们分离并鉴定了ftsZ84的三个基因内抑制子。所有三个抑制子突变都增加了FtsZ84对GTP的表观亲和力,这与沿纵向界面改善的亚基-亚基相互作用一致。虽然动力学分析表明抑制子突变增加了FtsZ84对GTP的亲和力,但所有三个突变体的GTP水解速率都降低,并且在体外不能支持组装。
总之,我们的数据表明FtsZ以及其他组装受类似调节的酶,可以通过增加底物结合和亚基-亚基相互作用来补偿催化缺陷。此外,这些结果突出了常用的体外组装条件与复杂细胞内环境中FtsZ环形成之间的二分法。