Suppr超能文献

加速的黄金角度径向稀疏 MRI 重建的优化与验证,采用自校准 GRAPPA 算子网格化。

Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

机构信息

Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.

Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.

出版信息

Magn Reson Med. 2018 Jul;80(1):286-293. doi: 10.1002/mrm.27030. Epub 2017 Nov 28.

Abstract

PURPOSE

Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging.

METHODS

GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients.

RESULTS

GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min.

CONCLUSION

The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

黄金角度径向稀疏并行(GRASP)MRI 重建需要网格化和重网格化,以在径向和笛卡尔 k 空间之间转换数据。这些操作在每次迭代中都会重复执行,这使得重建计算量很大。本研究旨在使用自校准 GRAPPA 算子网格化(GROG)加速 GRASP 重建,并验证其在临床成像中的性能。

方法

GROG 是一种基于并行成像的替代网格化方法,其中在非笛卡尔网格上采集的 k 空间数据使用多线圈阵列的信息转移到笛卡尔 k 空间网格上。对于迭代非笛卡尔图像重建,GROG 仅作为预处理步骤执行一次。因此,随后的迭代重建可以直接在笛卡尔空间中进行,这大大降低了计算负担。在这里,首先优化了将 GROG 与 GRASP 结合的框架(GROG-GRASP),然后在 22 例前列腺患者中与标准 GRASP 重建进行比较。

结果

与 GRASP 相比,GROG-GRASP 的重建时间减少了约 4.2 倍(约 333 分钟与 78 分钟),同时保持图像质量(结构相似性指数≈0.97,均方根误差≈0.007)。两位有经验的放射科医生对视觉图像质量评估没有显示两种重建方案之间有显著差异。使用图形处理单元实现,图像重建时间可以进一步缩短至约 14 分钟。

结论

使用 GROG 可以大大加速 GRASP 重建。该框架有望更广泛地应用于 GRASP 和其他迭代非笛卡尔重建方法的临床应用。磁共振医学 80:286-293,2018。©2017 国际磁共振学会。

相似文献

引用本文的文献

9
Deep Learning-Based Reconstruction for Cardiac MRI: A Review.基于深度学习的心脏磁共振成像重建:综述
Bioengineering (Basel). 2023 Mar 6;10(3):334. doi: 10.3390/bioengineering10030334.
10
Kz-accelerated variable-density stack-of-stars MRI.Kz-加速变密度叠星星 MRI。
Magn Reson Imaging. 2023 Apr;97:56-67. doi: 10.1016/j.mri.2022.12.017. Epub 2022 Dec 25.

本文引用的文献

4
Compressed sensing for body MRI.用于人体磁共振成像的压缩感知
J Magn Reson Imaging. 2017 Apr;45(4):966-987. doi: 10.1002/jmri.25547. Epub 2016 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验