Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN, 55455, USA.
Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
MAGMA. 2024 Jul;37(3):429-438. doi: 10.1007/s10334-024-01157-8. Epub 2024 May 14.
To enable high-quality physics-guided deep learning (PG-DL) reconstruction of large-scale 3D non-Cartesian coronary MRI by overcoming challenges of hardware limitations and limited training data availability.
While PG-DL has emerged as a powerful image reconstruction method, its application to large-scale 3D non-Cartesian MRI is hindered by hardware limitations and limited availability of training data. We combine several recent advances in deep learning and MRI reconstruction to tackle the former challenge, and we further propose a 2.5D reconstruction using 2D convolutional neural networks, which treat 3D volumes as batches of 2D images to train the network with a limited amount of training data. Both 3D and 2.5D variants of the PG-DL networks were compared to conventional methods for high-resolution 3D kooshball coronary MRI.
Proposed PG-DL reconstructions of 3D non-Cartesian coronary MRI with 3D and 2.5D processing outperformed all conventional methods both quantitatively and qualitatively in terms of image assessment by an experienced cardiologist. The 2.5D variant further improved vessel sharpness compared to 3D processing, and scored higher in terms of qualitative image quality.
PG-DL reconstruction of large-scale 3D non-Cartesian MRI without compromising image size or network complexity is achieved, and the proposed 2.5D processing enables high-quality reconstruction with limited training data.
通过克服硬件限制和有限的训练数据可用性的挑战,实现高质量的基于物理的深度学习(PG-DL)重建大型 3D 非笛卡尔冠状动脉 MRI。
虽然 PG-DL 已成为一种强大的图像重建方法,但由于硬件限制和有限的训练数据可用性,其在大型 3D 非笛卡尔 MRI 中的应用受到阻碍。我们结合了深度学习和 MRI 重建的几个最新进展来解决前者的挑战,并进一步提出了一种使用 2D 卷积神经网络的 2.5D 重建方法,该方法将 3D 体积视为 2D 图像的批处理,以便在有限的训练数据量下训练网络。PG-DL 网络的 3D 和 2.5D 变体都与传统方法进行了比较,用于高分辨率 3D 科舒尔球冠状动脉 MRI。
在经验丰富的心脏病专家进行的图像评估方面,提出的用于 3D 非笛卡尔冠状动脉 MRI 的 PG-DL 重建在 3D 和 2.5D 处理方面均优于所有传统方法,无论是在定量还是定性方面。与 3D 处理相比,2.5D 变体进一步提高了血管清晰度,并在定性图像质量方面得分更高。
实现了不牺牲图像大小或网络复杂性的大型 3D 非笛卡尔 MRI 的 PG-DL 重建,并且所提出的 2.5D 处理能够使用有限的训练数据实现高质量的重建。