Suppr超能文献

视觉皮层网络中的负相关

Negative Correlations in Visual Cortical Networks.

作者信息

Chelaru Mircea I, Dragoi Valentin

机构信息

Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA.

出版信息

Cereb Cortex. 2016 Jan;26(1):246-56. doi: 10.1093/cercor/bhu207. Epub 2014 Sep 12.

Abstract

The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function.

摘要

皮层回路编码的信息量关键取决于附近神经元在其反应中表现出逐次试验(噪声)相关性的能力。根据噪声相关性的符号及其与信号相关性的关系,相对于不相关的神经元放电,噪声相关性既可以提高也可以降低群体编码的准确性。尽管使用实验和理论工具对正噪声相关性进行了广泛研究,但负相关性在皮层回路中的功能作用仍然难以捉摸。我们通过在警觉猴子的初级视觉皮层(V1)浅层进行多电极记录来解决这个问题。尽管正噪声相关性随着细胞间方向偏好差异呈指数衰减,但负相关性在群体中均匀分布。使用用于费希尔信息估计的统计模型,我们发现即使平均相关性保持不变,负相关性的适度增加也会导致网络准确性急剧提高。为了研究控制负相关性强度的变量,我们构建了一个V1的循环脉冲网络模型。我们发现增加局部抑制并减少兴奋会导致神经元放电率降低,同时增加负噪声相关性,这反过来又会提高群体信噪比和网络准确性。总之,这些结果有助于我们理解参与负相关性产生的神经元机制及其对皮层回路功能的有益影响。

相似文献

1
Negative Correlations in Visual Cortical Networks.
Cereb Cortex. 2016 Jan;26(1):246-56. doi: 10.1093/cercor/bhu207. Epub 2014 Sep 12.
2
Correlated variability in laminar cortical circuits.
Neuron. 2012 Nov 8;76(3):590-602. doi: 10.1016/j.neuron.2012.08.029.
3
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1.
J Neurosci. 2017 Apr 5;37(14):3764-3775. doi: 10.1523/JNEUROSCI.2728-16.2017. Epub 2017 Mar 6.
4
Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4302-7. doi: 10.1073/pnas.1114223109. Epub 2012 Feb 27.
5
High noise correlation between the functionally connected neurons in emergent V1 microcircuits.
Exp Brain Res. 2016 Feb;234(2):523-32. doi: 10.1007/s00221-015-4482-7. Epub 2015 Nov 2.
6
Spontaneous Fluctuations in Visual Cortical Responses Influence Population Coding Accuracy.
Cereb Cortex. 2017 Feb 1;27(2):1409-1427. doi: 10.1093/cercor/bhv312.
7
Stimulus Dependence of Correlated Variability across Cortical Areas.
J Neurosci. 2016 Jul 13;36(28):7546-56. doi: 10.1523/JNEUROSCI.0504-16.2016.
8
Laminar dependence of neuronal correlations in visual cortex.
J Neurophysiol. 2013 Feb;109(4):940-7. doi: 10.1152/jn.00846.2012. Epub 2012 Nov 28.
9
Spiking Noise and Information Density of Neurons in Visual Area V2 of Infant Monkeys.
J Neurosci. 2019 Jul 17;39(29):5673-5684. doi: 10.1523/JNEUROSCI.2023-18.2019. Epub 2019 May 30.
10
Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.
Cereb Cortex. 2015 Sep;25(9):3182-96. doi: 10.1093/cercor/bhu111. Epub 2014 Jun 5.

引用本文的文献

1
Competitive interactions shape brain dynamics and computation across species.
bioRxiv. 2024 Oct 22:2024.10.19.619194. doi: 10.1101/2024.10.19.619194.
2
The spatial scale of somatostatin subnetworks increases from sensory to association cortex.
Cell Rep. 2022 Sep 6;40(10):111319. doi: 10.1016/j.celrep.2022.111319.
5
Parallel and functionally segregated processing of task phase and conscious content in the prefrontal cortex.
Commun Biol. 2018 Dec 5;1:215. doi: 10.1038/s42003-018-0225-1. eCollection 2018.
6
The Magnitude, But Not the Sign, of MT Single-Trial Spike-Time Correlations Predicts Motion Detection Performance.
J Neurosci. 2018 May 2;38(18):4399-4417. doi: 10.1523/JNEUROSCI.1182-17.2018. Epub 2018 Apr 6.
7
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3539-E3548. doi: 10.1073/pnas.1802356115. Epub 2018 Mar 27.
8
Cortical response states for enhanced sensory discrimination.
Elife. 2017 Dec 23;6:e29226. doi: 10.7554/eLife.29226.
9
Long-term optical imaging of neurovascular coupling in mouse cortex using GCaMP6f and intrinsic hemodynamic signals.
Neuroimage. 2018 Jan 15;165:251-264. doi: 10.1016/j.neuroimage.2017.09.055. Epub 2017 Sep 30.
10
Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl's Auditory Forebrain.
eNeuro. 2017 Jun 30;4(3). doi: 10.1523/ENEURO.0144-17.2017. eCollection 2017 May-Jun.

本文引用的文献

1
Laminar dependence of neuronal correlations in visual cortex.
J Neurophysiol. 2013 Feb;109(4):940-7. doi: 10.1152/jn.00846.2012. Epub 2012 Nov 28.
2
Correlated variability in laminar cortical circuits.
Neuron. 2012 Nov 8;76(3):590-602. doi: 10.1016/j.neuron.2012.08.029.
3
Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex.
Front Comput Neurosci. 2012 Mar 8;6:7. doi: 10.3389/fncom.2012.00007. eCollection 2012.
4
The effect of noise correlations in populations of diversely tuned neurons.
J Neurosci. 2011 Oct 5;31(40):14272-83. doi: 10.1523/JNEUROSCI.2539-11.2011.
5
Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content.
Nat Neurosci. 2010 Oct;13(10):1276-82. doi: 10.1038/nn.2630. Epub 2010 Aug 29.
6
The asynchronous state in cortical circuits.
Science. 2010 Jan 29;327(5965):587-90. doi: 10.1126/science.1179850.
7
Decorrelated neuronal firing in cortical microcircuits.
Science. 2010 Jan 29;327(5965):584-7. doi: 10.1126/science.1179867.
8
Stimulus-dependent correlations and population codes.
Neural Comput. 2009 Oct;21(10):2774-804. doi: 10.1162/neco.2009.10-08-879.
9
Gating multiple signals through detailed balance of excitation and inhibition in spiking networks.
Nat Neurosci. 2009 Apr;12(4):483-91. doi: 10.1038/nn.2276. Epub 2009 Mar 22.
10
The operating regime of local computations in primary visual cortex.
Cereb Cortex. 2009 Sep;19(9):2166-80. doi: 10.1093/cercor/bhn240. Epub 2009 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验