Luppi Andrea I, Sanz Perl Yonatan, Vohryzek Jakub, Mediano Pedro A M, Rosas Fernando E, Milisav Filip, Suarez Laura E, Gini Silvia, Gutierrez-Barragan Daniel, Gozzi Alessandro, Misic Bratislav, Deco Gustavo, Kringelbach Morten L
University of Oxford, Oxford, UK.
St John's College, Cambridge, UK.
bioRxiv. 2024 Oct 22:2024.10.19.619194. doi: 10.1101/2024.10.19.619194.
Adaptive cognition relies on cooperation across anatomically distributed brain circuits. However, specialised neural systems are also in constant competition for limited processing resources. How does the brain's network architecture enable it to balance these cooperative and competitive tendencies? Here we use computational whole-brain modelling to examine the dynamical and computational relevance of cooperative and competitive interactions in the mammalian connectome. Across human, macaque, and mouse we show that the architecture of the models that most faithfully reproduce brain activity, consistently combines modular cooperative interactions with diffuse, long-range competitive interactions. The model with competitive interactions consistently outperforms the cooperative-only model, with excellent fit to both spatial and dynamical properties of the living brain, which were not explicitly optimised but rather emerge spontaneously. Competitive interactions in the effective connectivity produce greater levels of synergistic information and local-global hierarchy, and lead to superior computational capacity when used for neuromorphic computing. Altogether, this work provides a mechanistic link between network architecture, dynamical properties, and computation in the mammalian brain.
适应性认知依赖于在解剖学上分布的脑回路之间的协作。然而,专门的神经系统也在不断争夺有限的处理资源。大脑的网络架构如何使其能够平衡这些协作和竞争倾向呢?在这里,我们使用计算全脑模型来研究哺乳动物连接组中协作和竞争相互作用的动态和计算相关性。在人类、猕猴和小鼠中,我们发现最能忠实地再现大脑活动的模型架构,始终将模块化的协作相互作用与弥散的、长程的竞争相互作用结合在一起。具有竞争相互作用的模型始终优于仅具有协作作用的模型,对活体大脑的空间和动态特性具有出色的拟合度,这些特性并非经过明确优化,而是自发出现的。有效连接中的竞争相互作用产生更高水平的协同信息和局部 - 全局层次结构,并在用于神经形态计算时导致更高的计算能力。总之,这项工作在哺乳动物大脑的网络架构、动态特性和计算之间提供了一种机制联系。