Suppr超能文献

神经元群体中噪声相关性的影响。

The effect of noise correlations in populations of diversely tuned neurons.

机构信息

Centre for Integrative Neuroscience and Institute for Theoretical Physics, University of Tübingen, Tübingen, Germany.

出版信息

J Neurosci. 2011 Oct 5;31(40):14272-83. doi: 10.1523/JNEUROSCI.2539-11.2011.

Abstract

The amount of information encoded by networks of neurons critically depends on the correlation structure of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than others. In homogeneous populations of neurons, this limited range correlation structure is highly detrimental to the accuracy of a population code. Therefore, reduced spike count correlations under attention, after adaptation, or after learning have been interpreted as evidence for a more efficient population code. Here, we analyze the role of limited range correlations in more realistic, heterogeneous population models. We use Fisher information and maximum-likelihood decoding to show that reduced correlations do not necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons, increasing the level of limited range correlations can substantially improve encoding accuracy. We found that this improvement results from a decrease in noise entropy that is associated with increasing correlations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the limit of large populations, the encoding accuracy is independent of both structure and magnitude of noise correlations.

摘要

神经元网络所编码的信息量极大程度上取决于其活动的相关结构。具有相似刺激偏好的神经元之间的噪声相关性往往高于其他神经元。在同质神经元群体中,这种有限范围的相关结构对群体编码的准确性极为不利。因此,注意力、适应或学习后的尖峰计数相关性降低被解释为更有效的群体编码的证据。在这里,我们在更现实、更异质的群体模型中分析了有限范围相关性的作用。我们使用 Fisher 信息和最大似然解码来表明,相关性降低并不一定能提高编码准确性。事实上,在具有几百个以上神经元的群体中,增加有限范围相关性的水平可以显著提高编码准确性。我们发现,这种改进是由于噪声熵的降低所致,如果边际分布不变,则与相关性的增加相关。令人惊讶的是,对于恒定的噪声熵和在大群体的极限情况下,编码准确性与噪声相关性的结构和幅度都无关。

相似文献

2
Effects of noise correlations on information encoding and decoding.噪声相关性对信息编码与解码的影响。
J Neurophysiol. 2006 Jun;95(6):3633-44. doi: 10.1152/jn.00919.2005. Epub 2006 Mar 22.
3
Stimulus-dependent variability and noise correlations in cortical MT neurons.皮层 MT 神经元中依赖刺激的变异性和噪声相关性。
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13162-7. doi: 10.1073/pnas.1300098110. Epub 2013 Jul 22.
5
Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons.中脑神经元对自然电感觉刺激的群体编码。
J Neurosci. 2021 Apr 28;41(17):3822-3841. doi: 10.1523/JNEUROSCI.2232-20.2021. Epub 2021 Mar 9.
7
Negative Correlations in Visual Cortical Networks.视觉皮层网络中的负相关
Cereb Cortex. 2016 Jan;26(1):246-56. doi: 10.1093/cercor/bhu207. Epub 2014 Sep 12.
8
Information-Limiting Correlations in Large Neural Populations.大规模神经元群体中的信息限制相关性。
J Neurosci. 2020 Feb 19;40(8):1668-1678. doi: 10.1523/JNEUROSCI.2072-19.2019. Epub 2020 Jan 15.
10
Predicting synchronous firing of large neural populations from sequential recordings.从序贯记录中预测大型神经元群体的同步放电。
PLoS Comput Biol. 2021 Jan 28;17(1):e1008501. doi: 10.1371/journal.pcbi.1008501. eCollection 2021 Jan.

引用本文的文献

3
Hierarchical emergence of opponent coding in auditory belt cortex.听觉带皮层中对立编码的分层出现。
J Neurophysiol. 2025 Mar 1;133(3):944-964. doi: 10.1152/jn.00519.2024. Epub 2025 Feb 18.

本文引用的文献

2
Reassessing optimal neural population codes with neurometric functions.重新评估最优神经群体代码的神经测量函数。
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4423-8. doi: 10.1073/pnas.1015904108. Epub 2011 Feb 28.
6
Stimulus-dependent correlations and population codes.刺激依赖相关性与群体编码。
Neural Comput. 2009 Oct;21(10):2774-804. doi: 10.1162/neco.2009.10-08-879.
10
Implications of neuronal diversity on population coding.神经元多样性对群体编码的影响。
Neural Comput. 2006 Aug;18(8):1951-86. doi: 10.1162/neco.2006.18.8.1951.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验