Bayle Kevin, Gilbert Alexis, Julien Maxime, Yamada Keita, Silvestre Virginie, Robins Richard J, Akoka Serge, Yoshida Naohiro, Remaud Gérald S
EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3, France.
Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan.
Anal Chim Acta. 2014 Oct 10;846:1-7. doi: 10.1016/j.aca.2014.07.018. Epub 2014 Jul 19.
Intramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal (13)C distribution, and (ii) an approach to determining the "absolute" position-specific (13)C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the (13)C frequency range of the studied molecule, i.e. the chemical shift range. The "absolute value" and, therefore, the trueness of the (13)C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py-irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py-irm-MS (thus, the "true" value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol steps required to enable the determination of position-specific (13)C content by isotopic (13)C NMR, irrespective of the NMR spectrometer: parameters to be adjusted, performance test using [1,2-(13)C2]acetic acid, generation of correction factors.
分子内的碳-13组成能够提供有关特定分子(生物)合成历史的新信息。同位素碳-13核磁共振光谱法提供了一种测量位置特异性碳-13含量的通用工具。作为一种新兴技术,其性能的某些方面尚未完全阐明。本文报道了:(i)获得令人满意的真实性和精密度以测定内部碳-13分布所需的条件,以及(ii)一种测定“绝对”位置特异性碳-13含量的方法。关于(i),一旦满足定量条件,特别是适当的质子去耦效率,无论使用何种光谱仪以及研究何种分子,都能获得小于1%的精密度。当研究化学反应或过程时,这种性能是测量转化化合物或残留化合物上同位素分馏的先决条件。对真实性的研究表明,光谱仪的响应取决于所研究分子的碳-13频率范围,即化学位移范围。通过与耦合热解装置的同位素质谱法(气相色谱-热解-irm-质谱法)在乙酸片段上获得的结果进行比较,评估了乙酸碳-13核磁共振测量的“绝对值”以及真实性,该技术是乙酸的参考方法。在本研究中使用的两台核磁共振光谱仪中,一台给出的值与气相色谱-热解-irm-质谱法获得的值相对应(因此是“真实”值),而另一台显示出偏差,该偏差取决于分子共振频率覆盖的范围。因此,前者可直接用于研究同位素归属,而后者只能直接用于比较数据,例如在真实性研究中,但也可通过应用适当的校正因子来获得真实值。本研究评估了通过同位素碳-13核磁共振测定位置特异性碳-13含量所需的几个关键实验步骤,无论使用何种核磁共振光谱仪:需要调整的参数、使用[1,2-(13)C2]乙酸进行性能测试、生成校正因子。