Suppr超能文献

癌症网络中的随机性与保留模式

Randomness and preserved patterns in cancer network.

作者信息

Rai Aparna, Menon A Vipin, Jalan Sarika

机构信息

Centre for Bio-Science and Bio-Medical Engineering, Indian Institute of Technology Indore, M-Block, IET-DAVV Campus, Khandwa Road, Indore 452017, India.

Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, M-Block, IET-DAVV Campus, Khandwa Road, Indore 452017, India.

出版信息

Sci Rep. 2014 Sep 15;4:6368. doi: 10.1038/srep06368.

Abstract

Breast cancer has been reported to account for the maximum cases among all female cancers till date. In order to gain a deeper insight into the complexities of the disease, we analyze the breast cancer network and its normal counterpart at the proteomic level. While the short range correlations in the eigenvalues exhibiting universality provide an evidence towards the importance of random connections in the underlying networks, the long range correlations along with the localization properties reveal insightful structural patterns involving functionally important proteins. The analysis provides a benchmark for designing drugs which can target a subgraph instead of individual proteins.

摘要

据报道,迄今为止,乳腺癌在所有女性癌症中占比最高。为了更深入地了解该疾病的复杂性,我们在蛋白质组学水平上分析了乳腺癌网络及其正常对应物。虽然特征值中的短程相关性表现出普遍性,这为潜在网络中随机连接的重要性提供了证据,但长程相关性以及定位特性揭示了涉及功能重要蛋白质的有洞察力的结构模式。该分析为设计能够靶向子图而非单个蛋白质的药物提供了基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f3f/5376158/5207d93b8166/srep06368-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验