Mysore Shreesh P, Knudsen Eric I
Department of Neurobiology, Stanford University, 299 West Campus Drive, Stanford, CA 94305, USA.
Department of Neurobiology, Stanford University, 299 West Campus Drive, Stanford, CA 94305, USA.
Neuron. 2014 Oct 1;84(1):214-226. doi: 10.1016/j.neuron.2014.08.019. Epub 2014 Sep 11.
The brain integrates stimulus-driven (exogenous) activity with internally generated (endogenous) activity to compute the highest priority stimulus for gaze and attention. Little is known about how this computation is accomplished neurally. We explored the underlying functional logic in a critical component of the spatial attention network, the optic tectum (OT, superior colliculus in mammals), in awake barn owls. We found that space-specific endogenous influences, evoked by activating descending forebrain pathways, bias competition among exogenous influences, and substantially enhance the quality of the categorical neural pointer to the highest priority stimulus. These endogenous influences operate across sensory modalities. Biologically grounded modeling revealed that the observed effects on network bias and selectivity require a simple circuit mechanism: endogenously driven gain modulation of feedback inhibition among competing channels. Our findings reveal fundamental principles by which internal and external information combine to guide selection of the next target for gaze and attention.
大脑将刺激驱动(外源性)活动与内部产生(内源性)活动整合起来,以计算出用于注视和注意力的最高优先级刺激。关于这种计算在神经层面是如何完成的,我们知之甚少。我们在清醒的仓鸮身上,探索了空间注意力网络的一个关键组成部分——视顶盖(OT,哺乳动物的上丘)的潜在功能逻辑。我们发现,通过激活下行前脑通路诱发的空间特异性内源性影响,会对外源性影响之间的竞争产生偏差,并显著提高指向最高优先级刺激的分类神经指针的质量。这些内源性影响跨感觉模态起作用。基于生物学的建模表明,观察到的对网络偏差和选择性的影响需要一种简单的电路机制:竞争通道之间内源性驱动的反馈抑制增益调制。我们的研究结果揭示了内部和外部信息结合起来指导注视和注意力下一个目标选择的基本原理。