Suppr超能文献

测量稀悬浮液中纳米颗粒的索雷特系数。

Measuring the Soret coefficient of nanoparticles in a dilute suspension.

作者信息

Zhao Chao, Fu Jinxin, Oztekin Alparslan, Cheng Xuanhong

机构信息

Department of Materials Science and Engineering and Bioengineering Program, Lehigh University, Bethlehem, PA.

Department of Physics, Lehigh University, Bethlehem, PA.

出版信息

J Nanopart Res. 2014 Oct;16(10):2625. doi: 10.1007/s11051-014-2625-6.

Abstract

Thermophoresis is an efficient process for the manipulation of molecules and nanoparticles due to the strong force it generates on the nanoscale. Thermophoresis is characterized by the Soret coefficient. Conventionally, the Soret coefficient of nanosized species is obtained by fitting the concentration profile under a temperature gradient at the steady state to a continuous phase model. However, when the number density of the target is ultralow and the dispersed species cannot be treated as a continuous phase, the bulk concentration fluctuates spatially, preventing extraction of temperature-gradient induced concentration profile. The present work demonstrates a strategy to tackle this problem by superimposing snapshots of nanoparticle distribution. The resulting image is suitable for the extraction of the Soret coefficient through the conventional data fitting method. The strategy is first tested through a discrete phase model that illustrates the spatial fluctuation of the nanoparticle concentration in a dilute suspension in response to the temperature gradient. By superimposing snapshots of the stochastic distribution, a thermophoretic depletion profile with low standard error is constructed, indicative of the Soret coefficient. Next, confocal analysis of nanoparticle distribution in response to a temperature gradient is performed using polystyrene nanobeads down to 1e-5% (). The experimental results also reveal that superimposing enhances the accuracy of extracted Soret coefficient. The critical particle number density in the superimposed image for predicting the Soret coefficient is hypothesized to depend on the spatial resolution of the image. This study also demonstrates that the discrete phase model is an effective tool to study particle migration under thermophoresis in the liquid phase.

摘要

由于热泳在纳米尺度上产生的强大作用力,它是一种用于操控分子和纳米颗粒的有效过程。热泳由索雷特系数表征。传统上,纳米尺寸物质的索雷特系数是通过将稳态下温度梯度下的浓度分布拟合到连续相模型来获得的。然而,当目标的数密度超低且分散物种不能被视为连续相时,整体浓度会在空间上波动,从而无法提取温度梯度诱导的浓度分布。本研究展示了一种通过叠加纳米颗粒分布快照来解决这个问题的策略。所得图像适合通过传统数据拟合方法提取索雷特系数。该策略首先通过离散相模型进行测试,该模型说明了稀悬浮液中纳米颗粒浓度响应温度梯度的空间波动。通过叠加随机分布的快照,构建了具有低标准误差的热泳耗尽分布,这表明了索雷特系数。接下来,使用低至1e - 5%()的聚苯乙烯纳米珠对响应温度梯度的纳米颗粒分布进行共聚焦分析。实验结果还表明,叠加提高了提取的索雷特系数的准确性。假设叠加图像中用于预测索雷特系数的临界颗粒数密度取决于图像的空间分辨率。本研究还表明,离散相模型是研究液相中热泳作用下颗粒迁移的有效工具。

相似文献

1
Measuring the Soret coefficient of nanoparticles in a dilute suspension.
J Nanopart Res. 2014 Oct;16(10):2625. doi: 10.1007/s11051-014-2625-6.
2
A Mode-Coupling Model of Colloid Thermophoresis in Aqueous Systems: Temperature and Size Dependencies of the Soret Coefficient.
Nano Lett. 2024 Mar 6;24(9):2798-2804. doi: 10.1021/acs.nanolett.3c04861. Epub 2024 Feb 26.
3
Solution composition dependent Soret coefficient using commercial MicroScale Thermophoresis instrument.
RSC Adv. 2023 May 30;13(23):15901-15909. doi: 10.1039/d3ra00154g. eCollection 2023 May 22.
4
In silico all-atom approach to thermodiffusion in dilute aqueous solutions.
J Chem Phys. 2021 Nov 7;155(17):174503. doi: 10.1063/5.0067756.
5
The Soret coefficient from the Faxén theorem for a particle moving in a fluid under a temperature gradient.
Eur Phys J E Soft Matter. 2019 May 14;42(5):55. doi: 10.1140/epje/i2019-11822-y.
6
Direct measurement of thermophoretic forces.
Soft Matter. 2015 Mar 28;11(12):2379-86. doi: 10.1039/c4sm02833c.
7
Phonon thermophoresis of crystalline nanoparticles in liquids.
Phys Chem Chem Phys. 2024 Mar 27;26(13):10214-10224. doi: 10.1039/d3cp06021g.
8
Thermophoresis and thermal orientation of Janus nanoparticles in thermal fields.
Eur Phys J E Soft Matter. 2022 Jul 9;45(7):59. doi: 10.1140/epje/s10189-022-00212-3.
9
Thermophoresis of microemulsion droplets: size dependence of the Soret effect.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):040401. doi: 10.1103/PhysRevE.75.040401. Epub 2007 Apr 2.
10
Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space.
J Colloid Interface Sci. 2023 May;637:489-499. doi: 10.1016/j.jcis.2023.01.112. Epub 2023 Jan 26.

引用本文的文献

本文引用的文献

1
Gravity-induced swirl of nanoparticles in microfluidics.
J Nanopart Res. 2013 Apr 1;15:1611. doi: 10.1007/s11051-013-1611-8.
2
Escalation of polymerization in a thermal gradient.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8030-5. doi: 10.1073/pnas.1303222110. Epub 2013 Apr 29.
3
Effects of long DNA folding and small RNA stem-loop in thermophoresis.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17972-7. doi: 10.1073/pnas.1215764109. Epub 2012 Oct 15.
4
Protein-binding assays in biological liquids using microscale thermophoresis.
Nat Commun. 2010 Oct 19;1:100. doi: 10.1038/ncomms1093.
5
Formation of protocell-like vesicles in a thermal diffusion column.
J Am Chem Soc. 2009 Jul 22;131(28):9628-9. doi: 10.1021/ja9029818.
6
Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient.
Phys Rev Lett. 2009 May 22;102(20):208301. doi: 10.1103/PhysRevLett.102.208301. Epub 2009 May 20.
7
Extreme accumulation of nucleotides in simulated hydrothermal pore systems.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9346-51. doi: 10.1073/pnas.0609592104. Epub 2007 May 9.
8
Why molecules move along a temperature gradient.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19678-82. doi: 10.1073/pnas.0603873103. Epub 2006 Dec 12.
9
Optothermal molecule trapping by opposing fluid flow with thermophoretic drift.
Phys Rev Lett. 2006 Jul 21;97(3):038103. doi: 10.1103/PhysRevLett.97.038103.
10
Thermophoresis of DNA determined by microfluidic fluorescence.
Eur Phys J E Soft Matter. 2004 Nov;15(3):277-86. doi: 10.1140/epje/i2004-10073-5. Epub 2004 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验