Suppr超能文献

在受限空间中温度梯度下表面亲水性介导的纳米/微米颗粒迁移。

Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space.

机构信息

Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

J Colloid Interface Sci. 2023 May;637:489-499. doi: 10.1016/j.jcis.2023.01.112. Epub 2023 Jan 26.

Abstract

HYPOTHESIS

Particle transport by a temperature gradient is prospective in many biomedical applications. However, the prevalence of boundary confinement in practical use introduces synergistic effects of thermophoresis and thermo-osmosis, causing controversial phenomena and great difficulty in understanding the mechanisms.

EXPERIMENTS

We developed a microfluidic chip with a uniform temperature gradient and switchable substrate hydrophilicity to measure the migrations of various particles (d = 200 nm - 2 μm), through which the effects of particle thermophoresis and thermo-osmotic flow from the substrate surface were decoupled. The contribution of substrate hydrophilicity on thermo-osmosis was examined. Thermophoresis was measured to clarify its dependence on particle size and hydrophilicity.

FINDINGS

This paper reports the first experimental evidence of a large enthalpy-dependent thermo-osmotic mobility χ ∼ ΔH on a hydrophobic polymer surface, which is 1-2 orders of magnitude larger than that on hydrophilic surfaces. The normalized Soret coefficient for polystyrene particles, S/d = 18.0 Kµm, is confirmed to be constant, which helps clarify the controversy of the size dependence. Besides, the Soret coefficient of hydrophobic proteins is approximately-four times larger than that of hydrophilic extracellular vesicles. These findings suggest that the intrinsic slip on the hydrophobic surface could enhance both surface thermo-osmosis and particle thermophoresis.

摘要

假设

在许多生物医学应用中,温度梯度驱动的粒子输运具有广阔的应用前景。然而,在实际应用中边界限制的普遍存在引入了热泳和热渗透的协同效应,导致了有争议的现象,并极大地增加了对机制的理解难度。

实验

我们开发了一种具有均匀温度梯度和可切换基底润湿性的微流控芯片,用于测量各种粒子(d=200nm-2μm)的迁移,通过这种方法可以将粒子热泳和从基底表面产生的热渗透流的影响分离出来。考察了基底润湿性对热渗透的影响。测量了热泳,以阐明其对粒子大小和润湿性的依赖性。

发现

本文首次报道了疏水聚合物表面上存在大的依赖焓的热渗透迁移率 χ∼ΔH 的实验证据,其值比亲水表面大 1-2 个数量级。聚苯乙烯粒子的归一化索雷特系数 S/d=18.0 Kµm 被证实为常数,这有助于澄清大小依赖性的争议。此外,疏水蛋白质的索雷特系数大约是亲水细胞外囊泡的四倍。这些发现表明,疏水表面上的固有滑移可以增强表面热渗透和粒子热泳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验