Suppr超能文献

使用商用微量热泳仪器测定溶液成分依赖的索雷特系数。

Solution composition dependent Soret coefficient using commercial MicroScale Thermophoresis instrument.

作者信息

Pulyala Praneetha, Jing Meng, Gao Wei, Cheng Xuanhong

机构信息

Department of Bioengineering, Lehigh University Bethlehem PA 18015 USA

Analytical Sciences, Core R&D, The Dow Chemical Company 400 Arcola Road Collegeville PA 19426 USA.

出版信息

RSC Adv. 2023 May 30;13(23):15901-15909. doi: 10.1039/d3ra00154g. eCollection 2023 May 22.

Abstract

Thermal diffusion of particles in dilute aqueous suspensions is driven by the interactions between the dispersing medium and the particle, which are largely influenced by the properties of the medium. Using a commercial instrument to generate thermophoresis, we developed a method to quantify the migration of colloids in a temperature gradient and further studied how it varies based on the composition and pH of the dispersing medium and with an anionic surfactant, at different salt concentrations. Thermophoretic migration of aqueous suspensions of carboxylate-modified polystyrene particles with different compositions is measured as MicroScale Thermophoresis (MST) traces and a mathematical model is developed to extract the Soret coefficient (). Soret coefficient measurements obtained using the developed method are in-line with previous theories and scientific findings from other literature, indicating a dependence of the on the Debye length and surface charge density of the suspended particles, both of which are controlled by the composition of the dispersing medium. The thermophobic/thermophilic behavior of particles is also found to be strongly influenced by the thermoelectric effect of the buffer ions. In this paper, a new analytical model is introduced and applied to complex systems to understand their thermophoretic behavior as a function of solvent properties.

摘要

稀水悬浮液中颗粒的热扩散是由分散介质与颗粒之间的相互作用驱动的,而这种相互作用在很大程度上受介质性质的影响。我们使用商用仪器产生热泳现象,开发了一种方法来量化胶体在温度梯度中的迁移,并进一步研究了其如何随分散介质的组成、pH值以及不同盐浓度下的阴离子表面活性剂而变化。通过微尺度热泳(MST)轨迹测量了不同组成的羧酸盐改性聚苯乙烯颗粒水悬浮液的热泳迁移,并建立了一个数学模型来提取索雷特系数()。使用所开发方法获得的索雷特系数测量结果与先前的理论以及其他文献中的科学发现一致,表明索雷特系数取决于悬浮颗粒的德拜长度和表面电荷密度,而这两者均由分散介质的组成控制。还发现颗粒的热疏/热亲行为受到缓冲离子热电效应的强烈影响。在本文中,引入了一种新的分析模型并将其应用于复杂系统,以了解它们作为溶剂性质函数的热泳行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/544b/10228179/e28e8a792bb4/d3ra00154g-f1.jpg

相似文献

1
Solution composition dependent Soret coefficient using commercial MicroScale Thermophoresis instrument.
RSC Adv. 2023 May 30;13(23):15901-15909. doi: 10.1039/d3ra00154g. eCollection 2023 May 22.
2
Influence of temperature and charge effects on thermophoresis of polystyrene beads.
Eur Phys J E Soft Matter. 2016 Dec;39(12):129. doi: 10.1140/epje/i2016-16129-y. Epub 2016 Dec 22.
3
A Mode-Coupling Model of Colloid Thermophoresis in Aqueous Systems: Temperature and Size Dependencies of the Soret Coefficient.
Nano Lett. 2024 Mar 6;24(9):2798-2804. doi: 10.1021/acs.nanolett.3c04861. Epub 2024 Feb 26.
4
Thermophoresis of colloids in nematic liquid crystal.
Soft Matter. 2020 Feb 26;16(8):1989-1995. doi: 10.1039/c9sm02424g.
5
Thermal orientation and thermophoresis of anisotropic colloids: The role of the internal composition.
Eur Phys J E Soft Matter. 2019 Jul 18;42(7):90. doi: 10.1140/epje/i2019-11852-5.
6
Particle thermophoresis in liquids.
Eur Phys J E Soft Matter. 2004 Nov;15(3):255-63. doi: 10.1140/epje/i2004-10065-5. Epub 2004 Nov 16.
7
Direct measurement of thermophoretic forces.
Soft Matter. 2015 Mar 28;11(12):2379-86. doi: 10.1039/c4sm02833c.
8
Does thermophoretic mobility depend on particle size?
Phys Rev Lett. 2008 Mar 14;100(10):108303. doi: 10.1103/PhysRevLett.100.108303. Epub 2008 Mar 12.
9
Measuring the Soret coefficient of nanoparticles in a dilute suspension.
J Nanopart Res. 2014 Oct;16(10):2625. doi: 10.1007/s11051-014-2625-6.
10
Thermal-diffusive behavior of a dilute solution of charged colloids.
Langmuir. 2008 Mar 18;24(6):2426-32. doi: 10.1021/la703517u. Epub 2008 Feb 7.

本文引用的文献

2
Thermodiffusion of ions in nanoconfined aqueous electrolytes.
J Colloid Interface Sci. 2022 Aug;619:331-338. doi: 10.1016/j.jcis.2022.03.077. Epub 2022 Mar 21.
3
Field-flow fractionation for nanoparticle characterization.
J Sep Sci. 2022 Jan;45(1):347-368. doi: 10.1002/jssc.202100595. Epub 2021 Sep 26.
4
Microscale Thermophoresis and additional effects measured in NanoTemper Monolith instruments.
Eur Biophys J. 2021 May;50(3-4):653-660. doi: 10.1007/s00249-021-01529-1. Epub 2021 Apr 17.
5
Molecular Identification of Tumor-Derived Extracellular Vesicles Using Thermophoresis-Mediated DNA Computation.
J Am Chem Soc. 2021 Jan 27;143(3):1290-1295. doi: 10.1021/jacs.0c12016. Epub 2021 Jan 17.
6
Thermophoretic Micron-Scale Devices: Practical Approach and Review.
Entropy (Basel). 2020 Aug 28;22(9):950. doi: 10.3390/e22090950.
7
Microscale Thermophoresis as a Screening Tool to Predict Melanin Binding of Drugs.
Pharmaceutics. 2020 Jun 16;12(6):554. doi: 10.3390/pharmaceutics12060554.
8
Thermophoresis of biological and biocompatible compounds in aqueous solution.
J Phys Condens Matter. 2019 Dec 18;31(50):503003. doi: 10.1088/1361-648X/ab421c.
10
Influence of temperature and charge effects on thermophoresis of polystyrene beads.
Eur Phys J E Soft Matter. 2016 Dec;39(12):129. doi: 10.1140/epje/i2016-16129-y. Epub 2016 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验