Suppr超能文献

蛋白质的加湿微接触印刷:在低能和高能表面上对蛋白质进行通用图案化

Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces.

作者信息

Ricoult Sébastien G, Nezhad Amir Sanati, Knapp-Mohammady Michaela, Kennedy Timothy E, Juncker David

机构信息

Department of Biomedical Engineering, McGill University , Montreal, Quebec H3A 2B4, Canada.

出版信息

Langmuir. 2014 Oct 14;30(40):12002-10. doi: 10.1021/la502742r. Epub 2014 Sep 30.

Abstract

Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP (HμCP) of proteins which enables universal printing of protein on any smooth surface. We found that by flowing water in proximity to proteins adsorbed on a hydrophilized stamp, the water vapor diffusing through the stamp enables the printing of proteins on both low and high energy surfaces. Indeed, when proteins are printed using stamps with increasing spacing between water-filled microchannels, only proteins adjacent to the channels are transferred. The vapor transport through the stamp was modeled, and by comparing the humidity profiles with the protein patterns, 88% relative humidity in the stamp was identified as the threshold for HμCP. The molecular forces occurring between PDMS, peptides, and glass during printing were modeled ab initio to confirm the critical role water plays in the transfer. Using HμCP, we introduce straightforward protocols to pattern multiple proteins side-by-side down to nanometer resolution without the need for expensive mask aligners, but instead exploiting self-alignment effects derived from the stamp geometry. Finally, we introduce vascularized HμCP stamps with embedded microchannels that allow printing proteins as arbitrary, large areas patterns with nanometer resolution. This work introduces the general concept of water-assisted μCP and opens new possibilities for "solvent-assisted" printing of proteins and of other nanoparticles.

摘要

蛋白质的微接触印刷(μCP)在生物传感器和细胞生物学中被广泛应用,但它仅限于将吸附在低自由能疏水表面的蛋白质印刷到高自由能亲水表面。这极大地限制了μCP的应用,因为需要进行苛刻的化学处理才能形成高能表面。在此,我们介绍了蛋白质的加湿微接触印刷(HμCP)技术,它能够在任何光滑表面上通用印刷蛋白质。我们发现,通过使水流靠近吸附在亲水化印章上的蛋白质,水蒸气扩散穿过印章,从而能够在低能和高能表面上印刷蛋白质。实际上,当使用填充水的微通道之间间距逐渐增大的印章来印刷蛋白质时,只有与通道相邻的蛋白质会被转移。对通过印章的蒸汽传输进行了建模,并通过将湿度分布与蛋白质图案进行比较,确定印章中88%的相对湿度为HμCP的阈值。对印刷过程中聚二甲基硅氧烷(PDMS)、肽和玻璃之间产生的分子力进行了从头算建模,以证实水在转移过程中所起的关键作用。使用HμCP,我们引入了简单的方案,能够将多种蛋白质并排图案化至纳米分辨率,无需昂贵的掩膜对准仪,而是利用印章几何形状产生的自对准效应。最后,我们引入了带有嵌入式微通道的血管化HμCP印章,可实现以纳米分辨率将蛋白质印刷成任意大面积图案。这项工作引入了水辅助μCP的一般概念,并为蛋白质和其他纳米颗粒的“溶剂辅助”印刷开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验