Keneally Sean K, Robbins Matthew J, Lunday Brian J
Department of Operational Sciences, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, 45433, USA.
Health Care Manag Sci. 2016 Jun;19(2):111-29. doi: 10.1007/s10729-014-9297-8. Epub 2014 Sep 16.
We develop a Markov decision process (MDP) model to examine aerial military medical evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to each service request is complicated by the threat conditions at the service locations and the priority class of each casualty event. We assume requests for MEDEVAC support arrive sequentially, with the location and the priority of each casualty known upon initiation of the request. The United States military uses a 9-line MEDEVAC request system to classify casualties as being one of three priority levels: urgent, priority, and routine. Multiple casualties can be present at a single casualty event, with the highest priority casualty determining the priority level for the casualty event. Moreover, an armed escort may be required depending on the threat level indicated by the 9-line MEDEVAC request. The proposed MDP model indicates how to optimally dispatch MEDEVAC helicopters to casualty events in order to maximize steady-state system utility. The utility gained from servicing a specific request depends on the number of casualties, the priority class for each of the casualties, and the locations of both the servicing ambulatory helicopter and casualty event. Instances of the dispatching problem are solved using a relative value iteration dynamic programming algorithm. Computational examples are used to investigate optimal dispatch policies under different threat situations and armed escort delays; the examples are based on combat scenarios in which United States Army MEDEVAC units support ground operations in Afghanistan.
我们开发了一个马尔可夫决策过程(MDP)模型,以研究战斗环境中的空中军事医疗后送(MEDEVAC)调度策略。在服务地点的威胁状况以及每个伤亡事件的优先级类别使得决定派遣哪架航空医疗资产去处理每个服务请求的问题变得复杂。我们假设对MEDEVAC支持的请求是依次到达的,每个伤亡人员的位置和优先级在请求发起时是已知的。美国军方使用一种9线MEDEVAC请求系统将伤亡人员分类为三个优先级级别之一:紧急、优先和常规。在单个伤亡事件中可能有多名伤亡人员,优先级最高的伤亡人员决定该伤亡事件的优先级级别。此外,根据9线MEDEVAC请求所指示的威胁级别,可能需要武装护送。所提出的MDP模型表明如何最优地派遣MEDEVAC直升机去处理伤亡事件,以最大化稳态系统效用。从处理特定请求中获得的效用取决于伤亡人员的数量、每个伤亡人员的优先级类别以及服务中的非卧床直升机和伤亡事件的位置。使用相对价值迭代动态规划算法来解决调度问题的实例。计算示例用于研究不同威胁情况和武装护送延迟下的最优调度策略;这些示例基于美国陆军MEDEVAC部队在阿富汗支持地面行动的战斗场景。