Mullick Chowdhury Sayan, Dasgupta Subham, McElroy Anne E, Sitharaman Balaji
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
J Appl Toxicol. 2014 Nov;34(11):1235-46. doi: 10.1002/jat.3066. Epub 2014 Sep 16.
The increased utilization of graphene nanoribbons (GNRs) for biomedical and material science applications necessitates the thorough evaluation of potential toxicity of these materials under both intentional and accidental exposure scenarios. We here investigated the effects of structural disruption of GNRs (induced by low-energy bath and high-energy probe sonication) to in vitro (human cell lines), and in vivo (Oryzias latipes embryo) biological systems. Our results demonstrate that low concentration (20 µg ml(-1) ) suspensions of GNRs prepared by as little as 1 min of probe sonication can cause significant decreases in the overall metabolic state of cells in vitro, and increased embryo/larval mortality in vivo, as compared to bath sonicated or unsonicated suspensions. Structural analysis indicates that probe sonication leads to disruption in GNR structure and production of smaller carbonaceous debris, which may be the cause of the toxicity observed. These results point out the importance of assessing post-production structural modifications for any application using nanomaterials.
石墨烯纳米带(GNRs)在生物医学和材料科学应用中的使用增加,这就需要在有意和意外暴露情况下全面评估这些材料的潜在毒性。我们在此研究了GNRs结构破坏(由低能量浴式和高能量探针超声处理诱导)对体外(人类细胞系)和体内(青鳉胚胎)生物系统的影响。我们的结果表明,与浴式超声处理或未超声处理的悬浮液相比,仅通过1分钟探针超声处理制备的低浓度(20µg ml⁻¹)GNRs悬浮液可导致体外细胞总体代谢状态显著下降,以及体内胚胎/幼体死亡率增加。结构分析表明,探针超声处理会导致GNRs结构破坏并产生较小的碳质碎片,这可能是观察到的毒性的原因。这些结果指出了评估纳米材料任何应用中生产后结构修饰的重要性。