van Bodegom Peter M, Douma Jacob C, Verheijen Lieneke M
Department of Ecological Science, Section of Systems Ecology, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
Department of Ecological Science, Section of Systems Ecology, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13733-8. doi: 10.1073/pnas.1304551110. Epub 2014 Sep 15.
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
动态全球植被模型(DGVMs)对于我们理解气候变化影响而言不可或缺。性状在DGVMs中的应用日益精细。然而,尚未存在对性状变异对全球植被分布的直接影响的全面分析。在此,我们给出此类分析作为原理证明。我们利用全球性状趋同的研究结果,针对来自全球数据库的单位面积叶质量、比茎密度和种子质量的性状观测值,对多种环境驱动因素进行回归分析。该分析解释了高达52%的性状全球变异。通过将回归方程与网格化土壤和气候图相结合生成的全球性状图,显示出性状值在数量级上的变化。随后,使用高斯混合密度函数,根据九种植被类型所拥有的性状组合对其进行特征描述。将性状图输入这些函数,以确定每种植被类型的全球出现概率。我们绘制植被图,假设每个位置最可能(因而最适宜)的植被类型将会实现。这幅完全基于性状的植被图正确预测了42%的观测到的植被分布。我们的结果表明,如果纳入比茎密度和种子质量等性状,仅三个性状就能实现DGVMs在植被分布方面大部分的预测能力。我们设想,我们基于性状的方法、由观测驱动的性状图以及植被图,可能会激发新一代强大的基于性状的DGVMs的产生。