Suppr超能文献

一种基于完全性状的全球植被分布建模方法。

A fully traits-based approach to modeling global vegetation distribution.

作者信息

van Bodegom Peter M, Douma Jacob C, Verheijen Lieneke M

机构信息

Department of Ecological Science, Section of Systems Ecology, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands

Department of Ecological Science, Section of Systems Ecology, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13733-8. doi: 10.1073/pnas.1304551110. Epub 2014 Sep 15.

Abstract

Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

摘要

动态全球植被模型(DGVMs)对于我们理解气候变化影响而言不可或缺。性状在DGVMs中的应用日益精细。然而,尚未存在对性状变异对全球植被分布的直接影响的全面分析。在此,我们给出此类分析作为原理证明。我们利用全球性状趋同的研究结果,针对来自全球数据库的单位面积叶质量、比茎密度和种子质量的性状观测值,对多种环境驱动因素进行回归分析。该分析解释了高达52%的性状全球变异。通过将回归方程与网格化土壤和气候图相结合生成的全球性状图,显示出性状值在数量级上的变化。随后,使用高斯混合密度函数,根据九种植被类型所拥有的性状组合对其进行特征描述。将性状图输入这些函数,以确定每种植被类型的全球出现概率。我们绘制植被图,假设每个位置最可能(因而最适宜)的植被类型将会实现。这幅完全基于性状的植被图正确预测了42%的观测到的植被分布。我们的结果表明,如果纳入比茎密度和种子质量等性状,仅三个性状就能实现DGVMs在植被分布方面大部分的预测能力。我们设想,我们基于性状的方法、由观测驱动的性状图以及植被图,可能会激发新一代强大的基于性状的DGVMs的产生。

相似文献

1
A fully traits-based approach to modeling global vegetation distribution.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13733-8. doi: 10.1073/pnas.1304551110. Epub 2014 Sep 15.
3
Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China.
Front Plant Sci. 2019 Jul 12;10:908. doi: 10.3389/fpls.2019.00908. eCollection 2019.
4
Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model.
Glob Chang Biol. 2015 Jul;21(7):2711-2725. doi: 10.1111/gcb.12870. Epub 2015 Apr 9.
5
Next-generation dynamic global vegetation models: learning from community ecology.
New Phytol. 2013 May;198(3):957-969. doi: 10.1111/nph.12210. Epub 2013 Mar 15.
7
Mapping local and global variability in plant trait distributions.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10937-E10946. doi: 10.1073/pnas.1708984114. Epub 2017 Dec 1.
9
Predicting species' range limits from functional traits for the tree flora of North America.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13739-44. doi: 10.1073/pnas.1300673111. Epub 2014 Sep 15.

引用本文的文献

2
Impacts of leaf traits on vegetation optical properties in Earth system modeling.
Nat Commun. 2025 May 29;16(1):4968. doi: 10.1038/s41467-025-60149-x.
3
Mapping multi-dimensional variability in water stress strategies across temperate forests.
Nat Commun. 2024 Oct 16;15(1):8909. doi: 10.1038/s41467-024-53160-1.
4
Global patterns of plant functional traits and their relationships to climate.
Commun Biol. 2024 Sep 13;7(1):1136. doi: 10.1038/s42003-024-06777-3.
5
Unforeseen plant phenotypic diversity in a dry and grazed world.
Nature. 2024 Aug;632(8026):808-814. doi: 10.1038/s41586-024-07731-3. Epub 2024 Aug 7.
7
Some fundamental elements for studying social-ecological co-existence in forest common pool resources.
PeerJ. 2023 Feb 27;11:e14731. doi: 10.7717/peerj.14731. eCollection 2023.
8
9
Citizen science plant observations encode global trait patterns.
Nat Ecol Evol. 2022 Dec;6(12):1850-1859. doi: 10.1038/s41559-022-01904-x. Epub 2022 Oct 20.

本文引用的文献

1
Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2.
Glob Chang Biol. 2013 Jan;19(1):45-63. doi: 10.1111/j.1365-2486.2012.02797.x. Epub 2012 Sep 7.
3
Plant functional classifications: from general groups to specific groups based on response to disturbance.
Trends Ecol Evol. 1997 Dec;12(12):474-8. doi: 10.1016/s0169-5347(97)01219-6.
4
The evolution of the worldwide leaf economics spectrum.
Trends Ecol Evol. 2011 Feb;26(2):88-95. doi: 10.1016/j.tree.2010.11.011. Epub 2010 Dec 31.
7
A structured and dynamic framework to advance traits-based theory and prediction in ecology.
Ecol Lett. 2010 Mar;13(3):267-83. doi: 10.1111/j.1461-0248.2010.01444.x.
9
Towards a worldwide wood economics spectrum.
Ecol Lett. 2009 Apr;12(4):351-66. doi: 10.1111/j.1461-0248.2009.01285.x. Epub 2009 Feb 20.
10
Functional traits and niche-based tree community assembly in an Amazonian forest.
Science. 2008 Oct 24;322(5901):580-2. doi: 10.1126/science.1160662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验